620
Views
2
CrossRef citations to date
0
Altmetric
Review Articles

Reprogramming cellular metabolism to increase the efficiency of microbial cell factories

&
Pages 892-909 | Received 17 Nov 2022, Accepted 11 Apr 2023, Published online: 28 Jun 2023

References

  • Zhu ZW, Hu YT, Teixeira PG, et al. Multidimensional engineering of Saccharomyces cerevisiae for efficient synthesis of medium-chain fatty acids. Nat Catal. 2020;3:64–74.
  • Gupta A, Reizman IM, Reisch CR, et al. Dynamic regulation of metabolic flux in engineered bacteria using a pathway-independent quorum-sensing circuit. Nat Biotechnol. 2017;35:273–279.
  • Nielsen J, Keasling JD. Engineering cellular metabolism. Cell. 2016;164:1185–1197.
  • Chen XL, Gao C, Guo L, et al. DCEO biotechnology: tools to design, construct, evaluate, and optimize the metabolic pathway for biosynthesis of chemicals. Chem Rev. 2018;118:4–72.
  • Ko YS, Kim JW, Lee JA, et al. Tools and strategies of systems metabolic engineering for the development of microbial cell factories for chemical production. Chem Soc Rev. 2020;49:4615–4636.
  • Lee SY, Kim HU. Systems strategies for developing industrial microbial strains. Nat Biotechnol. 2015;33:1061–1072.
  • Fang Y, Wang J, Ma W, et al. Rebalancing microbial carbon distribution for L-threonine maximization using a thermal switch system. Metab Eng. 2020;61:33–46.
  • Sakimoto KK, Wong AB, Yang P. Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production. Science. 2016;351:74–77.
  • Guo L, Diao W, Gao C, et al. Engineering Escherichia coli lifespan for enhancing chemical production. Nat Catal. 2020;3:307–318.
  • Lu Z, Peng B, Ebert BE, et al. Auxin-mediated protein depletion for metabolic engineering in terpene-producing yeast. Nat Commun. 2021;12:1051.
  • Zhao XR, Choi KR, Lee SY. Metabolic engineering of Escherichia coli for secretory production of free haem. Nat Catal. 2018;1:720–728.
  • Chen XL, Liu LM. Gene circuits for dynamically regulating metabolism. Trends Biotechnol. 2018;36:751–754.
  • Lalwani MA, Zhao EM, Avalos JL. Current and future modalities of dynamic control in metabolic engineering. Curr Opin Biotechnol. 2018;52:56–65.
  • Benzinger D, Khammash M. Pulsatile inputs achieve tunable attenuation of gene expression variability and graded multi-gene regulation. Nat Commun. 2018;9:10.
  • Shen B, Zhou P, Jiao X, et al. Fermentative production of Vitamin E tocotrienols in Saccharomyces cerevisiae under cold-shock-triggered temperature control. Nat Commun. 2020;11:51–55.
  • Shao JW, Wang M, Yu G, et al. Synthetic far-red light-mediated CRISPR-dCas9 device for inducing functional neuronal differentiation. Proc Natl Acad Sci USA. 2018;115:E6722–E6730.
  • Yang X, Liu J, Zhang J, et al. Quorum sensing-mediated protein degradation for dynamic metabolic pathway control in Saccharomyces cerevisiae. Metab Eng. 2021;64:85–94.
  • Miller TE, Beneyton T, Schwander T, et al. Light-powered CO2 fixation in a chloroplast mimic with natural and synthetic parts. Science. 2020;368:649–654.
  • Zhao EM, Suek N, Wilson MZ, et al. Light-based control of metabolic flux through assembly of synthetic organelles. Nat Chem Biol. 2019;15:589–597.
  • Liu ZD, Zhang JZ, Jin J, et al. Programming bacteria with light-sensors and applications in synthetic biology. Front Microbiol. 2018;9:2692.
  • Lalwani MA, Ip SS, Carrasco-López C, et al. Optogenetic control of the lac operon for bacterial chemical and protein production. Nat Chem Biol. 2021;17:71–79.
  • Noda S, Mori Y, Oyama S, et al. Reconstruction of metabolic pathway for isobutanol production in Escherichia coli. Microb Cell Fact. 2019;18:124.
  • Zhao EM, Zhang Y, Mehl J, et al. Optogenetic regulation of engineered cellular metabolism for microbial chemical production. Nature. 2018;555:683–687.
  • Tandar ST, Senoo S, Toya Y, et al. Optogenetic switch for controlling the central metabolic flux of Escherichia coli. Metab Eng. 2019;55:68–75.
  • Johnson ET, Schmidt-Dannert C. Light-energy conversion in engineered microorganisms. Trends Biotechnol. 2008;26:682–689.
  • Hu GP, Li Y, Ye C, et al. Engineering microorganisms for enhanced CO2 sequestration. Trends Biotechnol. 2019;37:532–547.
  • Gao C, Xu P, Ye C, et al. Genetic circuit-assisted smart microbial engineering. Trends Microbiol. 2019;27:1011–1024.
  • Yang Zheng FM, Lou C. Guo-Qiang Chen A tight cold-inducible switch built by coupling thermosensitive transcriptional and proteolytic regulatory parts. Nucleic Acids Res. 2020;21:1158–1161.
  • Yu W, Jin K, Wu Y, et al. A pathway independent multi-modular ordered control system based on thermosensors and CRISPRi improves bioproduction in Bacillus subtilis. Nucleic Acids Res. 2022;50:6587–6600.
  • Wang X, Han J-N, Zhang X, et al. Reversible thermal regulation for bifunctional dynamic control of gene expression in Escherichia coli. Nat Commun. 2021;12:3521.
  • Rajkumar AS, Liu G, Bergenholm D, et al. Engineering of synthetic, stress-responsive yeast promoters. Nucleic Acids Res. 2016;44:e136.
  • Xu X, Li X, Liu Y, et al. Pyruvate-responsive genetic circuits for dynamic control of central metabolism. Nat Chem Biol. 2020;16:1261–1268.
  • Liang G, Zhou P, Lu J, et al. Dynamic regulation of membrane integrity to enhance l-malate stress tolerance in Candida glabrata. Biotechnol Bioeng. 2021;118:4347–4359.
  • Kalia VC. Quorum sensing inhibitors: an overview. Biotechnol Adv. 2013;31:224–245.
  • Soma Y, Hanai T. Self-induced metabolic state switching by a tunable cell density sensor for microbial isopropanol production. Metab Eng. 2015;30:7–15.
  • Lawrence JM, Yin Y, Bombelli P, et al. Synthetic biology and bioelectrochemical tools for electrogenetic system engineering. Sci Adv. 2022;8:eabm5091.
  • Bhokisham N, VanArsdale E, Stephens KT, et al. A redox-based electrogenetic CRISPR system to connect with and control biological information networks. Nat Commun. 2020;11:24–37.
  • Koch M, Pandi A, Borkowski O, et al. Custom-made transcriptional biosensors for metabolic engineering. Curr Opin Biotechnol. 2019;59:78–84.
  • Andrews LB, Nielsen AAK, Voigt CA. Cellular checkpoint control using programmable sequential logic. Science. 2018;361:1217.
  • Deng J, Chen C, Gu Y, et al. Creating an in vivo bifunctional gene expression circuit through an aptamer-based regulatory mechanism for dynamic metabolic engineering in Bacillus subtilis. Metab Eng. 2019;55:179–190.
  • Doong SJ, Gupta A, Prather KLJ. Layered dynamic regulation for improving metabolic pathway productivity in Escherichia coli. Proc Natl Acad Sci USA. 2018;115:2964–2969.
  • Yang Y, Lin Y, Wang J, et al. Sensor-regulator and RNAi based bifunctional dynamic control network for engineered microbial synthesis. Nat Commun. 2018;9:30–43.
  • Tian R, Liu Y, Cao Y, et al. Titrating bacterial growth and chemical biosynthesis for efficient N-acetylglucosamine and N-acetylneuraminic acid bioproduction. Nat Commun. 2020;11:5078.
  • Qiu X, Xu P, Zhao X, et al. Combining genetically-encoded biosensors with high throughput strain screening to maximize erythritol production in Yarrowia lipolytica. Metab Eng. 2020;60:66–76.
  • Gao C, Hou JH, Xu P, et al. Programmable biomolecular switches for rewiring flux in Escherichia coli. Nat Commun. 2019;10:12.
  • Chen Z, Kibler RD, Hunt A, et al. De novo design of protein logic gates. Science. 2020;368:78–84.
  • Schaerli Y, Gili M, Isalan M. A split intein T7 RNA polymerase for transcriptional AND-logic. Nucleic Acids Res. 2014;42:12322–12328.
  • Chen X, Li T, Wang X, et al. Synthetic dual-input mammalian genetic circuits enable tunable and stringent transcription control by chemical and light. Nucleic Acids Res. 2016;44:2677–2690.
  • Fernandez-Rodriguez J, Moser F, Song M, et al. Engineering RGB color vision into Escherichia coli. Nat Chem Biol. 2017;13:706–708.
  • Zhang F, Keasling J. Biosensors and their applications in microbial metabolic engineering. Trends Microbiol. 2011;19:323–329.
  • Ding N, Zhou S, Deng Y. Transcription factor-based biosensor engineering for applications in synthetic biology. ACS Synth Biol. 2021;10:911–922.
  • Wu Y, Li Y, Jin K, et al. CRISPR-dCas12a-mediated genetic circuit cascades for multiplexed pathway optimization. Nat Chem Biol. 2023;19:367–377.
  • Wu Y, Chen T, Liu Y, et al. Design of a programmable biosensor-CRISPRi genetic circuits for dynamic and autonomous dual-control of metabolic flux in Bacillus subtilis. Nucleic Acids Res. 2020;48:996–1009.
  • Fink T, Lonzaric J, Praznik A, et al. Design of fast proteolysis-based signaling and logic circuits in mammalian cells. Nat Chem Biol. 2019;15:115–122.
  • Choi KR, Jang WD, Yang D, et al. Systems metabolic engineering strategies: integrating systems and synthetic biology with metabolic engineering. Trends Biotechnol. 2019;37:817–837.
  • Rogers JK, Church GM. Multiplexed engineering in biology. Trends Biotechnol. 2016;34:198–206.
  • Lopez-Igual R, Bernal-Bayard J, Rodriguez-Paton A, et al. Engineered toxin-intein antimicrobials can selectively target and kill antibiotic-resistant bacteria in mixed populations. Nat Biotechnol. 2019;37:755–760.
  • Weinberg BH, Pham NTH, Caraballo LD, et al. Large-scale design of robust genetic circuits with multiple inputs and outputs for mammalian cells. Nat Biotechnol. 2017;35:453–462.
  • Chen Z, Elowitz MB. Programmable protein circuit design. Cell. 2021;184:2284–2301.
  • Wang T, Badran AH, Huang TP, et al. Continuous directed evolution of proteins with improved soluble expression. Nat Chem Biol. 2018;14:972–980.
  • Cui S, Lv X, Xu X, et al. Multilayer genetic circuits for dynamic regulation of metabolic pathways. ACS Synth Biol. 2021;10:1587–1597.
  • de Jong H, Geiselmann J, Ropers D. Resource reallocation in bacteria by reengineering the gene expression machinery. Trends Microbiol. 2017;25:480–493.
  • Venkata Mohan S, Modestra JA, Amulya K, et al. A circular bioeconomy with biobased products from CO2 sequestration. Trends Biotechnol. 2016;34:506–519.
  • Liu H, Qi YL, Zhou P, et al. Microbial physiological engineering increases the efficiency of microbial cell factories. Crit Rev Biotechnol. 2021;41:339–354.
  • Utrilla J, O'Brien EJ, Chen K, et al. Global rebalancing of cellular resources by pleiotropic point mutations illustrates a multi-scale mechanism of adaptive evolution. Cell Syst. 2016;2:260–271.
  • Alper H, Stephanopoulos G. Global transcription machinery engineering: a new approach for improving cellular phenotype. Metab Eng. 2007;9:258–267.
  • Venturelli OS, Tei M, Bauer S, et al. Programming mRNA decay to modulate synthetic circuit resource allocation. Nat Commun. 2017;8:15128.
  • Alper H, Moxley J, Nevoigt E, et al. Engineering yeast transcription machinery for improved ethanol tolerance and production. Science. 2006;314:1565–1568.
  • Lanza AM, Alper HS. Using transcription machinery engineering to elicit complex cellular phenotypes. Methods Mol Biol. 2012;813:229–248.
  • Deng C, Wu Y, Lv X, et al. Refactoring transcription factors for metabolic engineering. Biotechnol Adv. 2022;57:107935.
  • Hui A, de Boer HA. Specialized ribosome system preferential translation of a single mRNA species by a subpopulation of mutated ribosomes in Escherichia coli. Proc Natl Acad Sci U S A. 1987;84:4762–4766.
  • Darlington APS, Kim J, Jimenez JI, et al. Dynamic allocation of orthogonal ribosomes facilitates uncoupling of co-expressed genes. Nat Commun. 2018;9:695.
  • Yang J, Han YH, Im J, et al. Synthetic protein quality control to enhance full-length translation in bacteria. Nat Chem Biol. 2021;17:421–427.
  • Costello A, Lao NT, Barron N, et al. Continuous translation of circularized mRNA improves recombinant protein titer. Metab Eng. 2019;52:284–292.
  • Shi T, Liu S, Zhang YPJ. CO2 fixation for malate synthesis energized by starch via in vitro metabolic engineering. Metab Eng. 2019;55:152–160.
  • Zhang Y, Li Y, Du C, et al. Inactivation of aldehyde dehydrogenase: a key factor for engineering 1,3-propanediol production by Klebsiella pneumoniae. Metab Eng. 2006;8:578–586.
  • Wei W, Sun P, Li Z, et al. A surface-display biohybrid approach to light-driven hydrogen production in air. Sci Adv. 2018;4:eapp9253.
  • Guo J. Light-driven fine chemical production in yeast biohybrids. Science. 2018;25:158–169.
  • Luan G, Zhang S, Wang M, et al. Progress and perspective on cyanobacterial glycogen metabolism engineering. Biotechnol Adv. 2019;37:771–786.
  • Luan G, Zhang S, Lu X. Engineering cyanobacteria chassis cells toward more efficient photosynthesis. Curr Opin Biotechnol. 2020;62:1–6.
  • Steindler L, Schwalbach MS, Smith DP, et al. Energy starved Candidatus Pelagibacter ubique substitutes light-mediated ATP production for endogenous carbon respiration. PLOS One. 2011;6:e19725.
  • Gong F, Liu G, Zhai X, et al. Quantitative analysis of an engineered CO2-fixing Escherichia coli reveals great potential of heterotrophic CO2 fixation. Biotechnol Biofuels. 2015;8:86.
  • Liang F, Englund E, Lindberg P, et al. Engineered cyanobacteria with enhanced growth show increased ethanol production and higher biofuel to biomass ratio. Metab Eng. 2018;46:51–59.
  • Yu JH, Zhu LW, Xia ST, et al. Combinatorial optimization of CO2 transport and fixation to improve succinate production by promoter engineering. Biotechnol Bioeng. 2016;113:1531–1541.
  • Antonovsky N, Gleizer S, Noor E, et al. Sugar synthesis from CO2 in Escherichia coli. Cell. 2016;166:115–125.
  • Tan C, Tao F, Xu P. Direct carbon capture for the production of high-performance biodegradable plastics by cyanobacterial cell factories. Green Chem. 2022;24:4470–4483.
  • Zhang Y, Lin Z, Liu Q, et al. Engineering of serine-deamination pathway, Entner-Doudoroff pathway and pyruvate dehydrogenase complex to improve poly(3-hydroxybutyrate) production in Escherichia coli. Microb Cell Fact. 2014;13:172.
  • Liu D, Wan N, Zhang F, et al. Enhancing fatty acid production in Escherichia coli by Vitreoscilla hemoglobin overexpression. Biotechnol Bioeng. 2017;114:463–467.
  • Xiong W, Lee TC, Rommelfanger S, et al. Phosphoketolase pathway contributes to carbon metabolism in cyanobacteria. Nat Plants. 2015;2:15187.
  • Hu G, Li Z, Ma D, et al. Light-driven CO2 sequestration in Escherichia coli to achieve theoretical yield of chemicals. Nat Catal. 2021;4:395–406.
  • Zhou J, Zhang F, Meng H, et al. Introducing extra NADPH consumption ability significantly increases the photosynthetic efficiency and biomass production of cyanobacteria. Metab Eng. 2016;38:217–227.
  • Tong T, Chen X, Hu G, et al. Engineering microbial metabolic energy homeostasis for improved bioproduction. Biotechnol Adv. 2021;53:107841.
  • Rodrigues RM, Guan X, Iñiguez JA, et al. Perfluorocarbon nanoemulsion promotes the delivery of reducing equivalents for electricity-driven microbial CO2 reduction. Nat Catal. 2019;2:407–414.
  • Guo L, Pang Z, Gao C, et al. Engineering microbial cell morphology and membrane homeostasis toward industrial applications. Curr Opin Biotechnol. 2020;66:18–26.
  • Yan Q, Fong SS. Increasing carbon source uptake rates to improve chemical productivity in metabolic engineering. Curr Opin Biotechnol. 2018;53:254–263.
  • Wang Y, Ling C, Chen Y, et al. Microbial engineering for easy downstream processing. Biotechnol Adv. 2019;37:115–129.
  • Ward JE, Lutken J. Overproduction of FtsZ induces minicell formation in E. coli. cell. 1985;42:941–949.
  • Sun XM, Zhang ZX, Wang LR, et al. Downregulation of T7 RNA polymerase transcription enhances pET-based recombinant protein production in Escherichia coli BL21 (DE3) by suppressing autolysis. Biotechnol Bioeng. 2021;118:153–163.
  • Zheng H. Interrogating the Escherichia coli cell cycle by cell dimension perturbations. Proc Natl Acad Sci U S A. 2016;15:16–28.
  • Dewachter L, Verstraeten N, Monteyne D, et al. A single-amino-acid substitution in obg activates a new programmed cell death pathway in Escherichia coli. mBio. 2015;6:e01935–e01915.
  • Mushnikov NV, Fomicheva A, Gomelsky M, et al. Inducible asymmetric cell division and cell differentiation in a bacterium. Nat Chem Biol. 2019;15:925–931.
  • Jiang XR, Chen GQ. Morphology engineering of bacteria for bio-production. Biotechnol Adv. 2016;34:435–440.
  • Molinari S, Shis DL, Bhakta SP, et al. A synthetic system for asymmetric cell division in Escherichia coli. Nat Chem Biol. 2019;15:917–924.
  • Tan Z, Yoon JM, Nielsen DR, et al. Membrane engineering via trans unsaturated fatty acids production improves Escherichia coli robustness and production of biorenewables. Metab Eng. 2016;35:105–113.
  • Yuan Y, Bi C, Nicolaou SA, et al. Overexpression of the Lactobacillus plantarum peptidoglycan biosynthesis murA2 gene increases the tolerance of Escherichia coli to alcohols and enhances ethanol production. Appl Microbiol Biotechnol. 2014;98:8399–8411.
  • Kurgan G, Panyon LA, Rodriguez-Sanchez Y, et al. Bioprospecting of native efflux pumps to enhance furfural tolerance in ethanologenic Escherichia coli. Appl Environ Microbiol. 2019;85:e02985–02918.
  • Wehrs M, Tanjore D, Eng T, et al. Engineering robust production microbes for large-scale cultivation. Trends Microbiol. 2019;27:524–537.
  • Qi YL, Liu H, Chen XL, et al. Engineering microbial membranes to increase stress tolerance of industrial strains. Metab Eng. 2019;53:24–34.
  • Sandoval NR, Papoutsakis ET. Engineering membrane and cell-wall programs for tolerance to toxic chemicals: beyond solo genes. Curr Opin Microbiol. 2016;33:56–66.
  • Lv X, Wang F, Zhou P, et al. Dual regulation of cytoplasmic and mitochondrial acetyl-CoA utilization for improved isoprene production in Saccharomyces cerevisiae. Nat Commun. 2016;7:12851.
  • Grewal PS, Samson JA, Baker JJ, et al. Peroxisome compartmentalization of a toxic enzyme improves alkaloid production. Nat Chem Biol. 2021;17:96–103.
  • Hou J, Tyo K, Liu Z, et al. Engineering of vesicle trafficking improves heterologous protein secretion in Saccharomyces cerevisiae. Metab Eng. 2012;14:120–127.
  • Hammer SK, Avalos JL. Harnessing yeast organelles for metabolic engineering. Nat Chem Biol. 2017;13:823–832.
  • Jiang L, Song X, Li Y, et al. Programming integrative extracellular and intracellular biocatalysis for rapid, robust, and recyclable synthesis of trehalose. ACS Catal. 2018;8:1837–1842.
  • Jin K, Xia H, Liu Y, et al. Compartmentalization and transporter engineering strategies for terpenoid synthesis. Microb Cell Fact. 2022;21:92.
  • Avalos JL, Fink GR, Stephanopoulos G. Compartmentalization of metabolic pathways in yeast mitochondria improves the production of branched-chain alcohols. Nat Biotechnol. 2013;31:335–341.
  • Huang M, Wang G, Qin JF, et al. Engineering the protein secretory pathway of Saccharomyces cerevisiae enables improved protein production. Proc Natl Acad Sci U S A. 2018;115:E11025–E11032.
  • Huang Z, Sun L, Lu G, et al. Regulating enzymatic reactions in Escherichia coli utilizing light-responsive cellular compartments based on liquid-liquid phase separation. Biorxiv. 2020. DOI:10.1101/2020.11.26.395616
  • Lee MJ, Mantell J, Hodgson L, et al. Engineered synthetic scaffolds for organizing proteins within the bacterial cytoplasm. Nat Chem Biol. 2018;14:142–147.
  • Banani SF, Lee HO, Hyman AA, et al. Biomolecular condensates: organizers of cellular biochemistry. Nat Rev Mol Cell Biol. 2017;18:285–298.
  • Yoshikawa M, Tsukiji S. Modularly built synthetic membraneless organelles enabling targeted protein sequestration and release. Biochemistry. 2021;60:3273–3276.
  • Wei SP, Qian ZG, Hu CF, et al. Formation and functionalization of membraneless compartments in Escherichia coli. Nat Chem Biol. 2020;16:1143–1148.
  • Abbondanzieri EA, Meyer AS. More than just a phase: the search for membraneless organelles in the bacterial cytoplasm. Curr Genet. 2019;65:691–694.
  • Kang W, Ma X, Kakarla D, et al. Organizing enzymes on self-assembled protein cages for cascade reactions. Angew Chem Int Ed. 2022;61:e202214001.
  • Zhou P, Liu H, Meng X, et al. Engineered artificial membraneless organelles in Saccharomyces cerevisiae to enhance chemical production. Angew Chem Int Ed. 2023;62:e202215778.
  • Dong H, Zhang W, Zhou S, et al. Engineering bioscaffolds for enzyme assembly. Biotechnol Adv. 2021;53:107721.
  • Lv XQ, Zhang C, Cui S, et al. Assembly of pathway enzymes by engineering functional membrane microdomain components for improved N-acetylglucosamine synthesis in Bacillus subtilis. Metab Eng. 2020;61:96–105.
  • Chou HH, Keasling JD. Programming adaptive control to evolve increased metabolite production. Nat Commun. 2013;4:2595.
  • Wu J, Bao M, Duan X, et al. Developing a pathway-independent and full-autonomous global resource allocation strategy to dynamically switching phenotypic states. Nat Commun. 2020;11:5521.
  • Xu Y, Fei J, Li G, et al. Nanozyme-catalyzed cascade reactions for mitochondria-mimicking oxidative phosphorylation. Angew Chem Int Ed. 2019;58:5572–5576.
  • Goh WWB, Sze CC. AI paradigms for teaching biotechnology. Trends Biotechnol. 2019;37:1–5.
  • Harfouche AL, Jacobson DA, Kainer D, et al. Accelerating climate resilient plant breeding by applying next-generation artificial intelligence. Trends Biotechnol. 2019;37:1217–1235.
  • Faust K. Microbial consortium design benefits from metabolic modeling. Trends Biotechnol. 2019;37:123–125.
  • Karkaria BD, Fedorec AJH, Barnes CP. Automated design of synthetic microbial communities. Nat Commun. 2021;12:672.
  • McCarty NS, Ledesma-Amaro R. Synthetic biology tools to engineer microbial communities for biotechnology. Trends Biotechnol. 2019;37:181–197.
  • Krawczyk K, Xue S, Buchmann P, et al. Electrogenetic cellular insulin release for real-time glycemic control in type 1 diabetic mice. Science. 2020;368:993–1001.
  • Stanley SA, Sauer J, Kane RS, et al. Remote regulation of glucose homeostasis in mice using genetically encoded nanoparticles. Nat Med. 2015;21:92–98.
  • Leibiger IB, Berggren PO. Regulation of glucose homeostasis using radiogenetics and magnetogenetics in mice. Nat Med. 2015;21:14–16.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.