206
Views
5
CrossRef citations to date
0
Altmetric
Review Articles

Diversity of fungus-mediated synthesis of gold nanoparticles: properties, mechanisms, challenges, and solving methods

, , , , , , & ORCID Icon show all
Pages 924-940 | Received 15 Jul 2021, Accepted 21 May 2023, Published online: 16 Jul 2023

References

  • Chen HJ, Shao L, Li Q, et al. Gold nanorods and their plasmonic properties. Chem Soc Rev. 2013;42:2679–2724. doi: 10.1039/c2cs35367a.
  • Mohamed MA. Myco-engineered gold nanoparticles from Jahnula aquatica coated with ampicillin/amoxicillin and their antibacterial and anticancer activity against cancer cells. Biotechnol Lett. 2020;42:151–170. doi: 10.1007/s10529-019-02764-5.
  • Barabadi H, Honary S, Mohammadi MA, et al. Green chemical synthesis of gold nanoparticles by using Penicillium aculeatum and their scolicidal activity against hydatid cyst protoscolices of Echinococcus granulosus. Environ Sci Pollut Res Int. 2017;24:5800–5810. doi: 10.1007/s11356-016-8291-8.
  • Mishra A, Tripathy SK, Yun SI. Fungus mediated synthesis of gold nanoparticles and their conjugation with genomic DNA isolated from Escherichia coli and Staphylococcus aureus. Process Biochem. 2012;47:701–711. doi: 10.1016/j.procbio.2012.01.017.
  • Saravanan A, Kumar PS, Karishma S, et al. A review on biosynthesis of metal nanoparticles and its environmental applications. Chemosphere. 2021;264:128580. doi: 10.1016/j.chemosphere.2020.128580.
  • Khandel P, Shahi SK. Mycogenic nanoparticles and their bio-prospective applications: current status and future challenges. J Nanostruct Chem. 2018;8:369–391. doi: 10.1007/s40097-018-0285-2.
  • Qu YY, Shen WL, Pei XF, et al. Biosynthesis of gold nanoparticles by Trichoderma sp WL-Go for azo dyes decolorization. J Environ Sci. 2017;56:79–86. doi: 10.1016/j.jes.2016.09.007.
  • Ponmurugan P. Biosynthesis of silver and gold nanoparticles using Trichoderma atroviride for the biological control of Phomopsis canker disease in tea plants. IET Nanobiotechnol. 2017;11:261–267. doi: 10.1049/iet-nbt.2016.0029.
  • Li YD, Duan XF, Qian YT, et al. Nanocrystalline silver particles: synthesis, agglomeration, and sputtering induced by electron beam. J Colloid Interface Sci. 1999;209:347–349. doi: 10.1006/jcis.1998.5879.
  • Iravani S, Korbekandi H, Mirmohammadi SV, et al. Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci. 2014;9:385–406.
  • Kitching M, Ramani M, Marsili E. Fungal biosynthesis of gold nanoparticles: mechanism and scale up. Microb Biotechnol. 2015;8:904–917. doi: 10.1111/1751-7915.12151.
  • Ovais M, Khalil AT, Ayaz M, et al. Biosynthesis of metal nanoparticles via microbial enzymes: a mechanistic approach. IJMS. 2018;19:4100. doi: 10.3390/ijms19124100.
  • Dhillon GS, Brar SK, Kaur S, et al. Green approach for nanoparticle biosynthesis by fungi: current trends and applications. Crit Rev Biotechnol. 2012;32:49–73. doi: 10.3109/07388551.2010.550568.
  • Zhao XX, Zhao HB, Yan L, et al. Recent developments in detection using noble metal nanoparticles. Crit Rev Anal Chem. 2020;50:97–110. doi: 10.1080/10408347.2019.1576496.
  • Makarov VV, Love AJ, Sinitsyna OV, et al. “Green” Nanotechnologies: synthesis of metal nanoparticles using plants. Acta Naturae. 2014;6:35–44. doi: 10.32607/20758251-2014-6-1-35-44.
  • Singh P, Kim YJ, Zhang DB, et al. Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol. 2016;34:588–599. doi: 10.1016/j.tibtech.2016.02.006.
  • Sintubin L, Verstraete W, Boon N. Biologically produced nanosilver: current state and future perspectives. Biotechnol Bioeng. 2012;109:2422–2436. doi: 10.1002/bit.24570.
  • Singh P, Kim YJ, Yang DC. A strategic approach for rapid synthesis of gold and silver nanoparticles by Panax ginseng leaves. Artif Cells Nanomed Biotechnol. 2016;44:1949–1957. doi: 10.3109/21691401.2015.1115410.
  • Murugan K, Benelli G, Panneerselvam C, et al. Cymbopogon citratus-synthesized gold nanoparticles boost the predation efficiency of copepod Mesocyclops aspericomis against malaria and dengue mosquitoes. Exp Parasitol. 2015;153:129–138. doi: 10.1016/j.exppara.2015.03.017.
  • Ankamwar B. Biosynthesis of gold nanoparticles (green-gold) using leaf extract of Terminalia catappa. E-J Chem. 2010;7:1334–1339. doi: 10.1155/2010/745120.
  • Sastry M, Ahmad A, Khan MI, et al. Biosynthesis of metal nanoparticles using fungi and actinomycete. Curr Sci. 2003;85:162–170.
  • Li JL, Tian B, Li T, et al. Biosynthesis of Au,Ag and Au-Ag bimetallic nanoparticles using protein extracts of Deinococcus radiodurans and evaluation of their cytotoxicity. Int J Nanomedicine. 2018;13:1411–1424. doi: 10.2147/IJN.S149079.
  • Zhang HK, Hu XK. Biosynthesis of Pd and Au as nanoparticles by a marine bacterium Bacillus sp GP and their enhanced catalytic performance using metal oxides for 4-nitrophenol reduction. Enzyme Microb Technol. 2018;113:59–66. doi: 10.1016/j.enzmictec.2018.03.002.
  • Jo JH, Singh P, Kim YJ, et al. Pseudomonas deceptionensis DC5-mediated synthesis of extracellular silver nanoparticles. Artif Cells Nanomed Biotechnol. 2016;44:1576–1581. doi: 10.3109/21691401.2015.1068792.
  • Gopal JV, Thenmozhi M, Kannabiran K, et al. Actinobacteria mediated synthesis of gold nanoparticles using Streptomyces sp. VITDDK3 and its antifungal activity. Mater Lett. 2013;93:360–362. doi: 10.1016/j.matlet.2012.11.125.
  • Ahmad A, Senapati S, Khan MI, et al. Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete, Rhodococcus species. Nanotechnology. 2003;14:824–828. doi: 10.1088/0957-4484/14/7/323.
  • Molnar Z, Bodai V, Szakacs G, et al. Green synthesis of gold nanoparticles by thermophilic filamentous fungi. Sci Rep. 2018;8:3943. doi: 10.1038/s41598-018-22112-3.
  • Mourato A, Gadanho M, Lino AR, et al. Biosynthesis of crystalline silver and gold nanoparticles by extremophilic yeasts. Bioinorg Chem Appl. 2011;2011:546074. doi: 10.1155/2011/546074.
  • Dahoumane SA, Djediat C, Yepremian C, et al. Species selection for the design of gold nanobioreactor by photosynthetic organisms. J Nanopart Res. 2012;14:883. doi: 10.1007/s11051-012-0883-8.
  • Xie JP, Lee JY, Wang DIC, et al. Silver nanoplates: from biological to biomimetic synthesis. ACS Nano. 2007;1:429–439. doi: 10.1021/nn7000883.
  • Liu B, Xie J, Lee JY, et al. Optimization of high-yield biological synthesis of single-crystalline gold nanoplates. J Phys Chem B. 2005;109:15256–15263. doi: 10.1021/jp051449n.
  • Kalimuthu K, Cha BS, Kim S, et al. Eco-friendly synthesis and biomedical applications of gold nanoparticles: a review. Microchem J. 2020;152:104296. doi: 10.1016/j.microc.2019.104296.
  • Ettadili FE, Aghris S, Laghrib F, et al. Recent advances in the nanoparticles synthesis using plant extract: applications and future recommendations. J Mol Struct. 2022;1248:131538.
  • Singh DK, Kumar J, Sharma VK, et al. Mycosynthesis of bactericidal silver and polymorphic gold nanoparticles: physicochemical variation effects and mechanism. Nanomedicine. 2018;13:191–207. doi: 10.2217/nnm-2017-0235.
  • Lee KX, Shameli K, Yew YP, et al. Recent developments in the facile bio-synthesis of gold nanoparticles (AuNPs) and their biomedical applications. Int J Nanomedicine. 2020;15:275–300. doi: 10.2147/IJN.S233789.
  • Mandal D, Bolander ME, Mukhopadhyay D, et al. The use of microorganisms for the formation of metal nanoparticles and their application. Appl Microbiol Biotechnol. 2006;69:485–492. doi: 10.1007/s00253-005-0179-3.
  • Asmathunisha N, Kathiresan K. A review on biosynthesis of nanoparticles by marine organisms. Colloids Surf B Biointerfaces. 2013;103:283–287. doi: 10.1016/j.colsurfb.2012.10.030.
  • Salem SS, Fouda A. Green synthesis of metallic nanoparticles and their prospective biotechnological applications: an overview. Biol Trace Elem Res. 2021;199:344–370. doi: 10.1007/s12011-020-02138-3.
  • Hanafy MH. Myconanotechnology in veterinary sector: status quo and future perspectives. Int J Vet Sci Med. 2018;6:270–273. doi: 10.1016/j.ijvsm.2018.11.003.
  • Girard V, Dieryckx C, Job C, et al. Secretomes: the fungal strike force. Proteomics. 2013;13:597–608. doi: 10.1002/pmic.201200282.
  • Mishra A, Kumari M, Pandey S, et al. Biocatalytic and antimicrobial activities of gold nanoparticles synthesized by Trichoderma sp. Bioresour Technol. 2014;166:235–242. doi: 10.1016/j.biortech.2014.04.085.
  • Naimi-Shamel N, Pourali P, Dolatabadi S. Green synthesis of gold nanoparticles using Fusarium oxysporum and antibacterial activity of its tetracycline conjugant. J Mycol Med. 2019;29:7–13. doi: 10.1016/j.mycmed.2019.01.005.
  • Wang RY, Zhang HL, Zhang XH, et al. Colorimetric detection of Hg2+ using gold nanoparticles synthesized by Trichosporon montevideense WIN. Biotechnol Lett. 2020;42:1691–1697. doi: 10.1007/s10529-020-02885-2.
  • Ahmad T, Wani IA, Manzoor N, et al. Biosynthesis, structural characterization and antimicrobial activity of gold and silver nanoparticles. Colloids Surf B Biointerfaces. 2013;107:227–234. doi: 10.1016/j.colsurfb.2013.02.004.
  • Soni N, Prakash S. Efficacy of fungus mediated silver and gold nanoparticles against Aedes aegypti larvae. Parasitol Res. 2012;110:175–184. doi: 10.1007/s00436-011-2467-4.
  • Mishra A, Tripathy SK, Wahab R, et al. Microbial synthesis of gold nanoparticles using the fungus Penicillium brevicompactum and their cytotoxic effects against mouse mayo blast cancer C2C12 cells. Appl Microbiol Biotechnol. 2011;92:617–630. doi: 10.1007/s00253-011-3556-0.
  • Clarance P, Luvankar B, Sales J, et al. Green synthesis and characterization of gold nanoparticles using endophytic fungi Fusarium solani and its in-vitro anticancer and biomedical applications. Saudi J Biol Sci. 2020;27:706–712. doi: 10.1016/j.sjbs.2019.12.026.
  • Kar PK, Murmu S, Saha S, et al. Anthelmintic efficacy of gold nanoparticles derived from a phytopathogenic fungus, Nigrospora oryzae. PLOS One. 2014;9:e84693. doi: 10.1371/journal.pone.0084693.
  • Quester K, Avalos-Borja M, Vilchis-Nestor AR, et al. SERS properties of different sized and shaped gold nanoparticles biosynthesized under different environmental conditions by Neurospora crassa extract. PLOS One. 2013;8:e77486. doi: 10.1371/journal.pone.0077486.
  • Kuralkar M, Ingle A, Gaikwad S, et al. Gold nanoparticles: novel catalyst for the preparation of direct methanol fuel cell. IET Nanobiotechnol. 2015;9:66–70. doi: 10.1049/iet-nbt.2014.0004.
  • Saravanakumar K, MubarakAli D, Kathiresan K, et al. Biogenic metallic nanoparticles as catalyst for bioelectricity production: a novel approach in microbial fuel cells. Mat Sci Eng B-Adv. 2016;203:27–34. doi: 10.1016/j.mseb.2015.10.006.
  • Basu A, Ray S, Chowdhury S, et al. Evaluating the antimicrobial, apoptotic, and cancer cell gene delivery properties of protein-capped gold nanoparticles synthesized from the edible mycorrhizal fungus Tricholoma crassum. Nanoscale Res Lett. 2018;13:154. doi: 10.1186/s11671-018-2561-y.
  • Ali S, Ali H, Siddique M, et al. Exploring the biosynthesized gold nanoparticles for their antibacterial potential and photocatalytic degradation of the toxic water wastes under solar light illumination. J Mol Struct. 2020;1215:128259. doi: 10.1016/j.molstruc.2020.128259.
  • Qu YY, Li XY, Lian SY, et al. Biosynthesis of gold nanoparticles using fungus Trichoderma sp WL-Go and their catalysis in degradation of aromatic pollutants. IET Nanobiotechnol. 2019;13:12–17. doi: 10.1049/iet-nbt.2018.5177.
  • Zhang XW, Qu YY, Shen WL, et al. Biogenic synthesis of gold nanoparticles by yeast Magnusiomyces ingens LH-F1 for catalytic reduction of nitrophenols. Colloid Surface A. 2016;497:280–285. doi: 10.1016/j.colsurfa.2016.02.033.
  • Banerjee K, Rai VR. Study on green synthesis of gold nanoparticles and their potential applications as catalysts. J Clust Sci. 2016;27:1307–1315. doi: 10.1007/s10876-016-1001-3.
  • Das SK, Das AR, Guha AK. Gold nanoparticles: microbial synthesis and application in water hygiene management. Langmuir. 2009;25:8192–8199. doi: 10.1021/la900585p.
  • Bhat R, Sharanabasava VG, Deshpande R, et al. Photo-bio-synthesis of irregular shaped functionalized gold nanoparticles using edible mushroom Pleurotus florida and its anticancer evaluation. J Photochem Photobiol B. 2013;125:63–69. doi: 10.1016/j.jphotobiol.2013.05.002.
  • Tripathi RM, Gupta RK, Bhadwal AS, et al. Fungal biomolecules assisted biosynthesis of Au-Ag alloy nanoparticles and evaluation of their catalytic property. IET Nanobiotechnol. 2015;9:178–183. doi: 10.1049/iet-nbt.2014.0043.
  • Gericke M, Pinches A. Microbial production of gold nanoparticles. Gold Bull. 2006;39:22–28. doi: 10.1007/BF03215529.
  • Bhargava A, Jain N, Khan MA, et al. Utilizing metal tolerance potential of soil fungus for efficient synthesis of gold nanoparticles with superior catalytic activity for degradation of rhodamine B. J Environ Manage. 2016;183:22–32. doi: 10.1016/j.jenvman.2016.08.021.
  • Vetchinkina EP, Loshchinina EA, Vodolazov IR, et al. Biosynthesis of nanoparticles of metals and metalloids by Basidiomycetes. Preparation of gold nanoparticles by using purified fungal phenol oxidases. Appl Microbiol Biotechnol. 2017;101:1047–1062. doi: 10.1007/s00253-016-7893-x.
  • Ben Tahar I, Fickers P, Dziedzic A, et al. Green pyomelanin-mediated synthesis of gold nanoparticles: modelling and design, physico-chemical and biological characteristics. Microb Cell Fact. 2019;18:210. doi: 10.1186/s12934-019-1254-2.
  • Balakrishnan S, Mukherjee S, Das S, et al. Gold nanoparticles-conjugated quercetin induces apoptosis via inhibition of EGFR/PI3K/Akt-mediated pathway in breast cancer cell lines (MCF-7 and MDA-MB-231). Cell Biochem Funct. 2017;35:217–231. doi: 10.1002/cbf.3266.
  • Kumari M, Mishra A, Pandey S, et al. Physico-chemical condition optimization during biosynthesis lead to development of improved and catalytically efficient gold nano particles. Sci Rep. 2016;6:27575. doi: 10.1038/srep27575.
  • Verma VC, Singh SK, Solanki R, et al. Biofabrication of anisotropic gold nanotriangles using extract of Endophytic aspergillus clavatus as a dual functional reductant and stabilizer. Nanoscale Res Lett. 2011;6:16. doi: 10.1007/s11671-010-9743-6.
  • Abdel-Kareem MM, Zohri AA. Extracellular mycosynthesis of gold nanoparticles using Trichoderma hamatum: optimization, characterization and antimicrobial activity. Lett Appl Microbiol. 2018;67:465–475. doi: 10.1111/lam.13055.
  • Barabadi H, Honary S, Ebrahimi P, et al. Microbial mediated preparation, characterization and optimization of gold nanoparticles. Braz J Microbiol. 2014;45:1493–1501. doi: 10.1590/s1517-83822014000400046.
  • Balakumaran MD, Ramachandran R, Balashanmugam P, et al. Mycosynthesis of silver and gold nanoparticles: optimization, characterization and antimicrobial activity against human pathogens. Microbiol Res. 2016;182:8–20. doi: 10.1016/j.micres.2015.09.009.
  • Bhargava A, Jain N, Gangopadhyay S, et al. Development of gold nanoparticle-fungal hybrid based heterogeneous interface for catalytic applications. Process Biochem. 2015;50:1293–1300. doi: 10.1016/j.procbio.2015.04.012.
  • Qu YY, Lian SY, Shen WL, et al. Rod-shaped gold nanoparticles biosynthesized using Pb2+-induced fungus Aspergillus sp. WL-Au. Bioprocess Biosyst Eng. 2020;43:123–131. doi: 10.1007/s00449-019-02210-w.
  • Castro ME, Cottet L, Castillo A. Biosynthesis of gold nanoparticles by extracellular molecules produced by the phytopathogenic fungus Botrytis cinerea. Mater Lett. 2014;115:42–44. doi: 10.1016/j.matlet.2013.10.020.
  • Sarkar J, Ray S, Chattopadhyay D, et al. Mycogenesis of gold nanoparticles using a phytopathogen Alternaria alternata. Bioprocess Biosyst Eng. 2012;35:637–643. doi: 10.1007/s00449-011-0646-4.
  • Maiti CK, Sen S, Acharya R, et al. First report of Alternaria atternata causing leaf spot on Stevia rebaudiana. Plant Pathol. 2007;56:723–723. doi: 10.1111/j.1365-3059.2007.01578.x.
  • Philip D. Biosynthesis of Au, Ag and Au-Ag nanoparticles using edible mushroom extract. Spectrochim Acta A Mol Biomol Spectrosc. 2009;73:374–381. doi: 10.1016/j.saa.2009.02.037.
  • Gurunathan S, Han J, Park JH, et al. A green chemistry approach for synthesizing biocompatible gold nanoparticles. Nanoscale Res Lett. 2014;9:248. doi: 10.1186/1556-276X-9-248.
  • Sheikhloo Z, Salouti M, Katiraee F. Biological synthesis of gold nanoparticles by fungus Epicoccum nigrum. J Clust Sci. 2011;22:661–665. doi: 10.1007/s10876-011-0412-4.
  • Mittal AK, Bhaumik J, Kumar S, et al. Biosynthesis of silver nanoparticles: elucidation of prospective mechanism and therapeutic potential. J Colloid Interface Sci. 2014;415:39–47. doi: 10.1016/j.jcis.2013.10.018.
  • Sanghi R, Verma P, Puri S. Enzymatic formation of gold nanoparticles using Phanerochaete chrysosporium. ACES. 2011;01:154–162. doi: 10.4236/aces.2011.13023.
  • Zhao XX, Zhou LF, Rajoka MSR, et al. Fungal silver nanoparticles: synthesis, application and challenges. Crit Rev Biotechnol. 2018;38:817–835. doi: 10.1080/07388551.2017.1414141.
  • Yadav A, Kon K, Kratosova G, et al. Fungi as an efficient mycosystem for the synthesis of metal nanoparticles: progress and key aspects of research. Biotechnol Lett. 2015;37:2099–2120. doi: 10.1007/s10529-015-1901-6.
  • Bose D, Chatterjee S. Biogenic synthesis of silver nanoparticles using guava (Psidium guajava) leaf extract and its antibacterial activity against Pseudomonas aeruginosa. Appl Nanosci. 2016;6:895–901. doi: 10.1007/s13204-015-0496-5.
  • Gupta S, Bector S. Biosynthesis of extracellular and intracellular gold nanoparticles by Aspergillus fumigatus and A. flavus. Antonie Van Leeuwenhoek. 2013;103:1113–1123. doi: 10.1007/s10482-013-9892-6.
  • Sayadi K, Akbarzadeh F, Pourmardan V, et al. Methods of green synthesis of Au NCs with emphasis on their morphology: a mini-review. Heliyon. 2021;7:e07250. doi: 10.1016/j.heliyon.2021.e07250.
  • Kumar SA, Peter YA, Nadeau JL. Facile biosynthesis, separation and conjugation of gold nanoparticles to doxorubicin. Nanotechnology. 2008;19:495101. doi: 10.1088/0957-4484/19/49/495101.
  • Hanauer M, Pierrat S, Zins I, et al. Separation of nanoparticles by gel electrophoresis according to size-and shape. Nano Lett. 2007;7:2881–2885. doi: 10.1021/nl071615y.
  • Sweeney SF, Woehrle GH, Hutchison JE. Rapid purification and size separation of gold nanoparticles via diafiltration. J Am Chem Soc. 2006;128:3190–3197. doi: 10.1021/ja0558241.
  • Das SK, Liang J, Schmidt M, et al. Biomineralization mechanism of gold by zygomycete fungi Rhizopous oryzae. ACS Nano. 2012;6:6165–6173. doi: 10.1021/nn301502s.
  • van der Wal A, Minor M, Norde W, et al. Electrokinetic potential of bacterial cells. Langmuir. 1997;13:165–171. doi: 10.1021/la960386k.
  • Ahmed S, Ikram S, Yudha SS, et al. Biosynthesis of gold nanoparticles: a green approach. J Photochem Photobiol B. 2016;161:141–153. doi: 10.1016/j.jphotobiol.2016.04.034.
  • Mukherjee P, Ahmad A, Mandal D, et al. Bioreduction of AuCl4− ions by the fungus, Verticillium sp. and surface trapping of the gold nanoparticles formed. Angew Chem Int Ed. 2001;40:3585–3588. doi: 10.1002/1521-3773(20011001)40:19<3585::AID-ANIE3585>3.0.CO;2-K.
  • Kashyap PL, Kumar S, Srivastava AK, et al. Myconanotechnology in agriculture: a perspective. World J Microbiol Biotechnol. 2013;29:191–207. doi: 10.1007/s11274-012-1171-6.
  • Zhang X, He X, Wang K, et al. Different active biomolecules involved in biosynthesis of gold nanoparticles by three fungus species. J Biomed Nanotechnol. 2011;7:245–254. doi: 10.1166/jbn.2011.1285.
  • Eide DJ, Bridgham JT, Zhao Z, et al. The vacuolar H+-ATPase of Saccharomyces cerevisiae is required for efficient copper detoxification, mitochondrial-function, and iron-metabolism. Mol Gen Genet. 1993;241:447–456. doi: 10.1007/BF00284699.
  • Prusty AK. Preparation of sliver nanoparticle by microorganism and its application in pharmacy. Int J Biomed Adv Res. 2011;2:32–37.
  • Shankar SS, Ahmad A, Pasricha R, et al. Bioreduction of chloroaurate ions by Geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. J Mater Chem. 2003;13:1822–1826. doi: 10.1039/b303808b.
  • Faramarzi MA, Forootanfar H. Biosynthesis and characterization of gold nanoparticles produced by laccase from Paraconiothyrium variabile. Colloids Surf B Biointerfaces. 2011;87:23–27. doi: 10.1016/j.colsurfb.2011.04.022.
  • Samanta S, Agarwal S, Nair KK, et al. Biomolecular assisted synthesis and mechanism of silver and gold nanoparticles. Mater Res Express. 2019;6:082009. doi: 10.1088/2053-1591/ab296b.
  • Chauhan A, Zubair S, Tufail S, et al. Fungus-mediated biological synthesis of gold nanoparticles: potential in detection of liver cancer. Int J Nanomed. 2011;6:2305–2319.
  • Apte M, Girme G, Bankar A, et al. 3, 4-dihydroxy-L-phenylalanine-derived melanin from Yarrowia lipolytica mediates the synthesis of silver and gold nanostructures. J Nanobiotechnology. 2013;11:2. doi: 10.1186/1477-3155-11-2.
  • Xu XG, Yang Y, Zhao XX, et al. Recovery of gold from electronic wastewater by Phomopsis sp. XP-8 and its potential application in the degradation of toxic dyes. Bioresour Technol. 2019;288:121610. doi: 10.1016/j.biortech.2019.121610.
  • Mele E, Anyfantis GC, Fragouli D, et al. Localized synthesis of gold nanoparticles in anisotropic alginate structures. RSC Adv. 2014;4:20449–20453. doi: 10.1039/c4ra02183e.
  • Gao X, Zhang Y, Zhao Y. Biosorption and reduction of Au (III) to gold nanoparticles by thiourea modified alginate. Carbohydr Polym. 2017;159:108–115. doi: 10.1016/j.carbpol.2016.11.095.
  • Durán N, Marcato PD, Durán M, et al. Mechanistic aspects in the biogenic synthesis of extracellular metal nanoparticles by peptides, bacteria, fungi, and plants. Appl Microbiol Biotechnol. 2011;90:1609–1624. doi: 10.1007/s00253-011-3249-8.
  • Mukherjee P, Senapati S, Mandal D, et al. Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum. ChemBioChem. 2002;3:461–463. doi: 10.1002/1439-7633(20020503)3:5<461::AID-CBIC461>3.0.CO;2-X.
  • Shah M, Fawcett D, Sharma S, et al. Green synthesis of metallic nanoparticles via biological entities. Materials. 2015;8:7278–7308. doi: 10.3390/ma8115377.
  • Vigneshwaran N, Ashtaputre NM, Varadarajan PV, et al. Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Mater Lett. 2007;61:1413–1418. doi: 10.1016/j.matlet.2006.07.042.
  • Vetchinkina EP, Pozdnyakova NN, Nikitina VE. Enzymes of the xylotrophic basidiomycete Lentinus edodes F-249 in the course of morphogenesis. Microbiology. 2008;77:144–150. doi: 10.1134/S0026261708020045.
  • Kupryashina MA, Vetchinkina EP, Burov AM, et al. Biosynthesis of gold nanoparticles by Azospirillum brasilense. Microbiology. 2013;82:833–840. doi: 10.1134/S002626171401007X.
  • Lim HA, Mishra A, Yun SI. Effect of pH on the extra cellular synthesis of gold and silver nanoparticles by Saccharomyces cerevisae. J Nanosci Nanotechnol. 2011;11:518–522. doi: 10.1166/jnn.2011.3266.
  • Jia X, Xu X, Zhang L. Synthesis and stabilization of gold nanoparticles induced by denaturation and renaturation of triple helical β-glucan in water. Biomacromolecules. 2013;14:1787–1794. doi: 10.1021/bm400182q.
  • Pattanayak S, Chakraborty S, Biswas S, et al. Degradation of methyl parathion, a common pesticide and fluorescence quenching of rhodamine B, a carcinogen using β-D glucan stabilized gold nanoparticles. J Saudi Chem Soc. 2018;22:937–948. doi: 10.1016/j.jscs.2018.02.004.
  • Srikar SK, Giri DD, Pal DB, et al. Green synthesis of silver nanoparticles: a review. GSC. 2016;06:34–56. doi: 10.4236/gsc.2016.61004.
  • Berry CC, de la Fuente JM, Mullin M, et al. Nuclear localization of HIV-1 tat functionalized gold nanoparticles. IEEE Trans Nanobioscience. 2007;6:262–269. doi: 10.1109/tnb.2007.908973.
  • Mata R, Bhaskaran A, Sadras SR. Green-synthesized gold nanoparticles from Plumeria alba flower extract to augment catalytic degradation of organic dyes and inhibit bacterial growth. Particuology. 2016;24:78–86. doi: 10.1016/j.partic.2014.12.014.
  • Ostovar B, Cai Y-Y, Tauzin LJ, et al. Increased intraband transitions in smaller gold nanorods enhance light emission. ACS Nano. 2020;14:15757–15765. doi: 10.1021/acsnano.0c06771.
  • Kleinman SL, Sharma B, Blaber MG, et al. Structure enhancement factor relationships in single gold nanoantennas by surface-enhanced Raman excitation spectroscopy. J Am Chem Soc. 2013;135:301–308. doi: 10.1021/ja309300d.
  • Kelly KL, Coronado EA, Zhao LL, et al. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B. 2003;107:668–677. doi: 10.1021/jp026731y.
  • Chang S-S, Lee C-L, Wang CRC, et al. Gold nanorods: electrochemical synthesis and optical properties. J Phys Chem B. 1997;101(34):6661–6664. doi: 10.1021/jp971656q.
  • Zhang X. Gold nanoparticles: recent advances in the biomedical applications. Cell Biochem Biophys. 2015;72:771–775. doi: 10.1007/s12013-015-0529-4.
  • Bewersdorff T, Glitscher EA, Bergueiro J, et al. The influence of shape and charge on protein corona composition in common gold nanostructures. Mater Sci Eng C Mater Biol Appl. 2020;117:111270. ():doi: 10.1016/j.msec.2020.111270.
  • Das SK, Dickinson C, Lafir F, et al. Synthesis, characterization and catalytic activity of gold nanoparticles biosynthesized with Rhizopus oryzae protein extract. Green Chem. 2012;14:1322–1334. doi: 10.1039/c2gc16676c.
  • Wen L, Lin Z, Gu P, et al. Extracellular biosynthesis of monodispersed gold nanoparticles by a SAM capping route. J Nanopart Res. 2009;11:279–288. doi: 10.1007/s11051-008-9378-z.
  • Mann S. Molecular tectonics in biomineralization and biomimetic materials chemistry. Nature. 1993;365:499–505. doi: 10.1038/365499a0.
  • Lukman AI, Gong B, Marjo C, et al. Facile synthesis, stabilization, and anti-bacterial performance of discrete Ag nanoparticles using Medicago sativa seed exudates. J Colloid Interface Sci. 2011;353:433–444. doi: 10.1016/j.jcis.2010.09.088.
  • Philip D. Green synthesis of gold and silver nanoparticles using Hibiscus rosa sinensis. Physica E. 2010;42:1417–1424. doi: 10.1016/j.physe.2009.11.081.
  • Dhanasekar NN, Rahul GR, Narayanan KB, et al. Green chemistry approach for the synthesis of gold nanoparticles using the fungus Alternaria sp. J Microbiol Biotechnol. 2015;25:1129–1135. doi: 10.4014/jmb.1410.10036.
  • Xie J, Lee JY, Wang DIC, et al. High-yield synthesis of complex gold nanostructures in a fungal system. J Phys Chem C. 2007;111(45):16858–16865. doi: 10.1021/jp0752668.
  • Das SK, Das AR, Guha AK. Microbial synthesis of multishaped gold nanostructures. Small. 2010;6:1012–1021. doi: 10.1002/smll.200902011.
  • Qu Y, You S, Zhang X, et al. Biosynthesis of gold nanoparticles using cell-free extracts of Magnusiomyces ingens LH-F1 for nitrophenols reduction. Bioprocess Biosyst Eng. 2018;41:359–367. doi: 10.1007/s00449-017-1869-9.
  • Honary S, Barabadi H, Gharaei-Fathabad E, et al. Green synthesis of copper oxide nanoparticles using Penicillium aurantiogriseum, Penicillium citrinum and Penicillium waksmanii. Dig J Nanomater Bios. 2012;7:999–1005.
  • Sathishkumar M, Sneha K, Won SW, et al. Cynamon zeylanicum bark extract and powder mediated green synthesis of nanocrystalline silver particles and its bactericidal activity. Colloids Surf B Biointerfaces. 2009;73:332–338. doi: 10.1016/j.colsurfb.2009.06.005.
  • Sneha K, Sathishkumar M, Kim S, et al. Counter ions and temperature incorporated tailoring of biogenic gold nanoparticles. Process Biochem. 2010;45:1450–1458. doi: 10.1016/j.procbio.2010.05.019.
  • Iravani S. Green synthesis of metal nanoparticles using plants. Green Chem. 2011;13:2638–2650. doi: 10.1039/c1gc15386b.
  • Song JY, Jang HK, Kim BS. Biological synthesis of gold nanoparticles using Magnolia kobus and Diopyros kaki leaf extracts. Process Biochem. 2009;44:1133–1138. doi: 10.1016/j.procbio.2009.06.005.
  • Singh VK, Singh AK. Role of microbially synthesized nanoparticles in sustainable agriculture and environmental management. In: Kumar A ,Singh AK, Choudhary KK, editors. Role of plant growth promoting microorganisms in sustainable agriculture and nanotechnology. Cambridge: Woodhead Publ Ltd; 2019. p. 5573.
  • Dhanasekar NN, Shirke A, Sakthivel N. Bioreduction of gold ions from Anisotropic to isotropic nanostructures by NADPH dependent reductase from Bipolaris oryzae. ChemistrySelect. 2020;5:11522–11529. doi: 10.1002/slct.202002385.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.