286
Views
6
CrossRef citations to date
0
Altmetric
Review Articles

Buckwheat OMICS: present status and future prospects

, , , , , , , , & show all
Pages 717-734 | Received 10 Oct 2022, Accepted 01 Jun 2023, Published online: 23 Jul 2023

References

  • FAOSTAT. 2021. http://www.fao.org/faostat/en/#data/QC2017
  • Morishita T, Hara T, Hara T. Important agronomic characteristics of yielding ability in common buckwheat; ecotype and ecological differentiation, preharvest sprouting resistance, shattering resistance, and lodging resistance. Breed. Sci. 2020;70:39–47. doi: 10.1270/jsbbs.19020.
  • Tang Z, Huang L, Gou J, et al. Genetic relationships among buckwheat (Fagopyrum) species from southwest China based on chloroplast and nuclear SSR markers. J Genet. 2014;93:849–853. doi: 10.1007/s12041-014-0439-z.
  • Chrungoo NK, Chettry U. Buckwheat: a critical approach towards assessment of its potential as a super crop. Indian J. Genet. 2021;81:1–23. doi: 10.31742/IJGPB.81.1.1.
  • Bonafaccia G, Gambelli L, Fabjan N, et al. Trace elements in flour and bran from common and tartary buckwheat. Food Chem. 2003;83:1–5. doi: 10.1016/S0308-8146(03)00228-0.
  • Kreft I, Zhou M, Golob A, et al. Breeding buckwheat for nutritional quality. Breed. Sci. 2020;70:67–73. doi: 10.1270/jsbbs.19016.
  • Matsui K, Walker AR. Biosynthesis and regulation of flavonoids in buckwheat. Breed. Sci. 2020;70:74–84. doi: 10.1270/jsbbs.19041.
  • Borovaya SA, Klykov AG. Some aspects of flavonoid biosynthesis and accumulation in buckwheat plants. Plant Biotechnol Rep. 2020;14:213–225.
  • Joshi DC, Chaudhari GV, Sood S, et al. Revisiting the versatile buckwheat: reinvigorating genetic gains through integrated breeding and genomics approach. Planta. 2019;250:783–801. doi: 10.1007/s00425-018-03080-4.
  • Wang Y, Campbell CG. Tartary buckwheat breeding (Fagopyrum tataricum L. Gaertn.) through hybridization with its Rice-Tartary type. Euphytica. 2007;156:399–405. doi: 10.1007/s10681-007-9389-3.
  • Zhou X, Wen L, Li Z, et al. Advance on the benefits of bioactive peptides from buckwheat. Phytochem Rev. 2015;14:381–388. doi: 10.1007/s11101-014-9390-0.
  • Wang C, Hu D, Liu X, et al. Effects of uniconazole on the lignin metabolism and lodging resistance of culm in common buckwheat (Fagopyrum esculentum M.). F Crop Res. 2015;180:46–53.
  • Zhang L, Li X, Ma B, et al. The tartary buckwheat genome provides insights into rutin biosynthesis and abiotic stress tolerance. Mol Plant. 2017;10:1224–1237.
  • Li H, Lv Q, Deng J, et al. Transcriptome analysis reveals key seed-development genes in common buckwheat (Fagopyrum esculentum). Int J Mol Sci. 2019;20:4303.
  • Matsui K, Yasui Y. Buckwheat heteromorphic self-incompatibility: genetics, genomics and application to breeding. Breed Sci. 2020;70:32–38. doi: 10.1270/jsbbs.19083.
  • Takeshima R, Nishio T, Komatsu S, et al. Identification of a gene encoding polygalacturonase expressed specifically in short styles in distylous common buckwheat (Fagopyrum esculentum). Heredity. 2019;123:492–502. doi: 10.1038/s41437-019-0227-x.
  • Yasui Y, Mori M, Matsumoto D, et al. Construction of a BAC library for buckwheat genome research - An application to positional cloning of agriculturally valuable traits. Genes Genet. Syst. 2008;83:393–401. doi: 10.1266/ggs.83.393.
  • Yasui Y, Mori M, Aii J, et al. S-LOCUS EARLY FLOWERING 3 is exclusively present in the genomes of short-styled buckwheat plants that exhibit heteromorphic self-incompatibility. PLoS One. 2012;7:e31264. doi: 10.1371/journal.pone.0031264.
  • Fang X, Zhang Y, Zhang Y, et al. De novo transcriptome assembly and identification of genes related to seed size in common buckwheat (Fagopyrum esculentum M.). Breed Sci. 2019;69:487–497. doi: 10.1270/jsbbs.18194.
  • Wu Q, Bai X, Zhao W, et al. De novo assembly and analysis of tartary buckwheat (Fagopyrum tataricum garetn.) transcriptome discloses key regulators involved in salt-stress response. Genes. 2017;8:255. doi: 10.3390/genes8100255.
  • Richardson T, Thistleton J, Higgins TJ, et al. Efficient Agrobacterium transformation of elite wheat germplasm without selection. Plant Cell Tissue Organ Cult. 2014;119:647–659.
  • Kim YK, Xu H, Park WT, et al. Genetic transformation of buckwheat (Fagopyrum esculentum M.) with Agrobacterium rhizogenes and production of rutin in transformed root cultures. Aust J Crop Sci. 2010;4:485–490.
  • Park N, Il, Li X, Thwe AA, et al. Enhancement of rutin in Fagopyrum esculentum hairy root cultures by the Arabidopsis transcription factor AtMYB12. Biotechnol Lett. 2012;34:577–583. doi: 10.1007/s10529-011-0807-1.
  • Thwe AA, Kim JK, Li X, et al. Metabolomic analysis and phenylpropanoid biosynthesis in hairy root culture of tartary buckwheat cultivars. PLoS One. 2013;8:e65349. doi: 10.1371/annotation/e3bbacf5-42a6-4010-869a-1c999804869f.
  • Park CH, Thwe AA, Kim SJ, et al. Effect of auxins on anthocyanin accumulation in hairy root cultures of tartary buckwheat cultivar Hokkai T10. Nat Prod Commun. 2016;11(9):1283–1286.
  • Varzakas T, Zakynthinos G, Verpoort F. Plant food residues as a source of nutraceuticals and functional foods. Foods. 2016;5:88. doi: 10.3390/foods5040088.
  • Mir RA, Nazir M, Naik S, et al. Utilizing the underutilized plant resources for development of life style foods: putting nutrigenomics to use.Plant Physiol Biochem. 2022;171:128–138. doi: 10.1016/j.plaphy.2021.12.038.
  • Yates S, Lagüe M, Knox R, et al. Crop Information Engine and Research Assistant (CIERA) for managing genealogy, phenotypic and genotypic data for breeding programs. bioRxiv. 2018. 10.1101/439505v4
  • Coppens F, Wuyts N, Inzé D, et al. Unlocking the potential of plant phenotyping data through integration and data-driven approaches. Curr Opin Syst Biol. 2017;4:58–63. doi: 10.1016/j.coisb.2017.07.002.
  • Dhondt S, Wuyts N, Inzé D. Cell to whole-plant phenotyping: the best is yet to come. Trends Plant Sci. 2013;18:428–439. doi: 10.1016/j.tplants.2013.04.008.
  • Li X, Kim JK, Park SY, et al. Comparative analysis of flavonoids and polar metabolite profiling of tanno-original and tanno-high rutin buckwheat. J Agric Food Chem. 2014;62:2701–2708. doi: 10.1021/jf4049534.
  • Sytar O, Bruckova K, Plotnitskaya A, et al. Non-destructive methodology in comparative physiology of buckwheat genotypes within the different origin. Fagopyrum. 1970;36:11–21. doi: 10.3986/fag0007.
  • Yasui Y, Hirakawa H, Ueno M, et al. Assembly of the draft genome of buckwheat and its applications in identifying agronomically useful genes. DNA Res. 2016;23:215–224. doi: 10.1093/dnares/dsw012.
  • Wang CL, Ding MQ, Zou CY, et al. Comparative analysis of four buckwheat species based on morphology and complete chloroplast genome sequences. Sci Rep. 2017;7:6514. doi: 10.1038/s41598-017-06638-6.
  • Ma KH, Kim NS, Lee GA, et al. Development of SSR markers for studies of diversity in the genus Fagopyrum. Theor Appl Genet. 2009;119:1247–1254. doi: 10.1007/s00122-009-1129-8.
  • Rana JC, Singh M, Chauhan RS, et al. Genetic resources of buckwheat in India. In: Zhou M, Kreft I, Woo SH, Chrungoo N, Wieslander G, editors. Molecular breeding and nutritional aspects of buckwheat. UK: Academic Press; 2016. pp. 109–135.
  • Gupta N, Sharma SK, Rana JC, et al. AFLP fingerprinting of tartary buckwheat accessions (Fagopyrum tataricum) displaying rutin content variation. Fitoterapia. 2012;83:1131–1137. doi: 10.1016/j.fitote.2012.04.015.
  • Li SQ, Howard Zhang Q. Advances in the development of functional foods from buckwheat. Crit Rev Food Sci Nutr. 2001;41:451–464. doi: 10.1080/20014091091887.
  • Zielińska D, Turemko M, Kwiatkowski J, et al. Evaluation of flavonoid contents and antioxidant capacity of the aerial parts of common and tartary buckwheat plants. Molecules. 2012;17:9668–9682. doi: 10.3390/molecules17089668.
  • Sharma TR, Jana S. Species relationships in Fagopyrum revealed by PCR-based DNA fingerprinting. Theor Appl Genet. 2002;105:306–312. doi: 10.1007/s00122-002-0938-9.
  • Chadwick R. Nutrigenomics, individualism and public health. Proc Nutr Soc. 2004;63:161–166. doi: 10.1079/PNS2003329.
  • Lampe JW, Navarro SL, Hullar MAJ, et al. Inter-individual differences in response to dietary intervention: integrating omics platforms towards personalised dietary recommendations. Proc Nutr Soc. 2013;72:207–218. doi: 10.1017/S0029665113000025.
  • Afman L, Müller M. Nutrigenomics: from molecular nutrition to prevention of disease. J Am Diet Assoc. 2006;106:569–576. doi: 10.1016/j.jada.2006.01.001.
  • Ramesha C, Kumari SS, Anuradha CM, et al. Nutrigenomic analysis of mulberry silkworm (Bombyx mori L.) strains using polymerase chain reaction - simple sequence repeats (PCR-SSR). Int J Biotechnol Mol Biol Res. 2010;1:92–100.
  • Kore KB, Pathak AK, Gadekar YP. Nutrigenomics: emerging face of molecular nutrition to improve animal health and production. Vet World. 2008;1(9):285–286.
  • DeBusk RM. Nutritional genomics: the foundation for personalized nutrition, what is nutritional genomicsl. In: Sareen S. G, Smith JL, G. JL, editors. Advanced nutrition and human metabolism. 5th ed. Australia: Wadsworth-Cengage Learning; 2009. p. 29–32.
  • Kaput J, Noble J, Hatipoglu B, et al. Application of nutrigenomic concepts to Type 2 diabetes mellitus. Nutr Metab Cardiovasc Dis. 2007;17(2):89–103.
  • Guo XD, Ma YJ, Parry J, et al. Phenolics content and antioxidant activity of tartary buckwheat from different locations. Molecules. 2011;16:9850–9867. doi: 10.3390/molecules16129850.
  • Sytar O. Phenolic acids in the inflorescences of different varieties of buckwheat and their antioxidant activity. J King Saud Univ Sci. 2015;27:136–142.
  • Nesvizhskii AI. Proteogenomics: concepts, applications and computational strategies. Nat Methods. 2014;11:1114–1125. doi: 10.1038/nmeth.3144.
  • Aziz RK, Bartels D, Best A, et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics. 2008;9:75. doi: 10.1186/1471-2164-9-75.
  • Aziz R. A hundred-year-old insight into the gut microbiome!. Gut Pathog. 2009;1:21. doi: 10.1186/1757-4749-1-21.
  • Hu Y, Hou Z, Liu D, et al. Tartary buckwheat flavonoids protect hepatic cells against high glucose-induced oxidative stress and insulin resistance via MAPK signaling pathways. Food Funct. 2016;7:1523–1536. doi: 10.1039/C5FO01467K.
  • Yan C, Guo J, Zhang ML. Research progress of flavonoids in buckwheat. Food Nutr China. 2015;21:65–69.
  • Bai YC, Li CL, Zhang JW, et al. Characterization of two tartary buckwheat R2R3-MYB transcription factors and their regulation of proanthocyanidin biosynthesis. Physiol Plant. 2014;152(3):431–440.
  • Luo X, Zhao H, Yao P, et al. An R2R3-MYB transcription factor FtMYB15 involved in the synthesis of anthocyanin and proanthocyanidins from tartary buckwheat. J Plant Growth Regul. 2018;37:76–84. doi: 10.1007/s00344-017-9709-3.
  • Zhang D, Jiang C, Huang C, et al. The light-induced transcription factor FtMYB116 promotes accumulation of rutin in Fagopyrum tataricum. Plant Cell Environ. 2019;42:1340–1351. doi: 10.1111/pce.13470.
  • Luo XP, Li SJ, Yao PF, et al. The jasmonate-ZIM domain protein FtJAZ2 interacts with the R2R3-MYB transcription factor FtMYB3 to affect anthocyanin biosynthesis in tartary buckwheat. Turkish J Biol. 2017;41:12.
  • Liu M, Ma Z, Zheng T, et al. Insights into the correlation between Physiological changes in and seed development of tartary buckwheat (Fagopyrum tataricum Gaertn.). BMC Genomics. 2018;19:648. doi: 10.1186/s12864-018-5036-8.
  • Huang W, Jarvis DI, Ahmed S, et al. Tartary buckwheat genetic diversity in the himalayas associated with farmer landrace diversity and low dietary dependence. Sustain. 2017;9:1806.
  • Gao J, Wang T, Liu M, et al. Transcriptome analysis of filling stage seeds among three buckwheat species with emphasis on rutin accumulation. PLoS One. 2017;12:e0189672. doi: 10.1371/journal.pone.0189672.
  • Woo JS, Suh HY, Park SY, et al. Structural basis for protein recognition by B30.2/SPRY domains. Mol Cell. 2006;24:967–976. doi: 10.1016/j.molcel.2006.11.009.
  • Woo SH, Fukuda M, Islam N, et al. Efficient peptide mapping and its application to identify embryo proteins in rice proteome analysis. Electrophoresis. 2002;23:647–654. doi: 10.1002/1522-2683(200202)23:4<647::AID-ELPS647>3.0.CO;2-O.
  • Fukuda M, Islam N, Woo SH, et al. Assessing matrix assisted laser desorption/ionization-time of flight-mass spectrometry as a means of rapid embryo protein identification in rice. Electrophoresis. 2003;24:1319–1329. doi: 10.1002/elps.200390168.
  • Chui H, Chan M, Hernandez D, et al. Rapid, sensitive, and specific Escherichia coli H antigen typing by matrix-assisted laser desorption ionization-time of flight-based peptide mass fingerprinting. J Clin Microbiol. 2015;53:2480–2485. doi: 10.1128/JCM.00593-15.
  • Matros A, Kaspar S, Witzel K, et al. Recent progress in liquid chromatography-based separation and label-free quantitative plant proteomics. Phytochemistry. 2011;72:963–974. doi: 10.1016/j.phytochem.2010.11.009.
  • Nam MH, Heo EJ, Kim JY, et al. Proteome analysis of the responses of Panax ginseng C. A. Meyer leaves to high light: use of electrospray ionization quadrupole-time of flight mass spectrometry and expressed sequence tag data. Proteomics. 2003;3:2351–2367. doi: 10.1002/pmic.200300509.
  • Park PJ. ChIP-seq: advantages and challenges of a maturing technology. Nat Rev Genet. 2009;10:669–680. doi: 10.1038/nrg2641.
  • Radović SR, Maksimović VR, Varkonji-Gašić EI. Characterization of buckwheat seed storage proteins. J Agric Food Chem. 1996;44:972–974. doi: 10.1021/jf950655x.
  • Zhu F. Chemical composition and health effects of Tartary buckwheat. Food Chem. 2016;203:231–245. doi: 10.1016/j.foodchem.2016.02.050.
  • Hashiguchi A, Yoshioka H, Komatsu S. Proteomic analysis of temperature dependency of buckwheat seed dormancy and quality degradation. Theor Exp Plant Physiol. 2018;30:77–88. doi: 10.1007/s40626-018-0104-7.
  • Gupta N, Sharma SK, Rana JC, et al. Expression of flavonoid biosynthesis genes vis-à-vis rutin content variation in different growth stages of Fagopyrum species. J Plant Physiol. 2011;168:2117–2123.
  • Wang S, Wang J, Guo Y. Microwave irradiation enhances the germination rate of tartary buckwheat and content of some compounds in its sprouts. Polish J Food Nutr Sci. 2018;68(3):195–205.
  • Gang W, Gang W, Wang J, et al. Effects of quercetin nanoliposomes on C6 glioma cells through induction of type III programmed cell death. Int J Nanomedicine. 2012;7:271–280.
  • Zheng XK, Zhang L, Wang WW, et al. Anti-diabetic activity and potential mechanism of total flavonoids of Selaginella tamariscina (Beauv.) Spring in rats induced by high fat diet and low dose STZ. J Ethnopharmacol. 2011;137(1):662–668.
  • Zakaryan H, Arabyan E, Oo A, et al. Flavonoids: promising natural compounds against viral infections. Arch Virol. 2017;162:2539–2551. doi: 10.1007/s00705-017-3417-y.
  • Xiaoming W, Ling L, Jinghang Z. Antioxidant and Anti-Fatigue Activities of Flavonoids From Puerariae Radix. African J Tradit Complement Altern Med [Internet]. 2012;9:221.
  • Tsai H, Deng H, Tsai S, et al. Bioactivity comparison of extracts from various parts of common and tartary buckwheats: evaluation of the antioxidant- and angiotensin-converting enzyme inhibitory activities. Chem Cent J. 2012;6:78.
  • Zhang ZL, Zhou ML, Tang Y, et al. Bioactive compounds in functional buckwheat food. Food Res. Int. 2012;49:389–395. doi: 10.1016/j.foodres.2012.07.035.
  • Li X, Kim YB, Kim Y, et al. Differential stress-response expression of two flavonol synthase genes and accumulation of flavonols in tartary buckwheat. J Plant Physiol. 2013;170(18):1630–1636.
  • Kim SJ, Zaidul ISM, Suzuki T, et al. Comparison of phenolic compositions between common and tartary buckwheat (Fagopyrum) sprouts. Food Chem. 2008;110:814–820. doi: 10.1016/j.foodchem.2008.02.050.
  • Lesjak M, Beara I, Simin N, et al. Antioxidant and anti-inflammatory activities of quercetin and its derivatives. J Funct Foods. 2018;40:68–75.
  • Stojilkovski K, Glavač NK, Kreft S, et al. Fagopyrin and flavonoid contents in common, Tartary, and cymosum buckwheat. J Food Compos Anal. 2013;32:126–130. doi: 10.1016/j.jfca.2013.07.005.
  • Li H, Lv Q, Ma C, et al. Metabolite profiling and transcriptome analyses provide insights into the flavonoid biosynthesis in the developing seed of tartary buckwheat (Fagopyrum tataricum). J Agric Food Chem. 2019;67:11262–11276. doi: 10.1021/acs.jafc.9b03135.
  • Jakab G, Ton J, Flors V, et al. Enhancing Arabidopsis salt and drought stress tolerance by chemical priming for its abscisic acid responses. Plant Physiol. 2005;139(1):267–274.
  • Reyes LF, Cisneros-Zevallos L. Electron-beam ionizing radiation stress effects on mango fruit (Mangifera indica L.) antioxidant constituents before and during postharvest storage. J. Agric. Food Chem. 2007;55:6132–6139. doi: 10.1021/jf0635661.
  • Manavalan LP, Guttikonda SK, Phan Tran LS, et al. Physiological and molecular approaches to improve drought resistance in soybean. Plant Cell Physiol. 2009;50(7):1260–1276.
  • Razzaq MK, Aleem M, Mansoor S, et al. Omics and crispr-cas9 approaches for molecular insight, functional gene analysis, and stress tolerance development in crops. Int J Mol Sci. 2021;22(3):1292.
  • Borghesi E, González-Miret ML, Escudero-Gilete ML, et al. Effects of salinity stress on carotenoids, anthocyanins, and color of diverse tomato genotypes. J Agric Food Chem. 2011;59:11676–11682. doi: 10.1021/jf2021623.
  • Zhang H, Han B, Wang T, et al. Mechanisms of plant salt response: insights from proteomics. J. Proteome Res. 2012;11:49–67. doi: 10.1021/pr200861w.
  • He Y, Li W, Lv J, et al. Ectopic expression of a wheat MYB transcription factor gene, TaMYB73, improves salinity stress tolerance in Arabidopsis thaliana. J Exp Bot. 2012;63(3):1511–1522.
  • Zhong H, Guo QQ, Chen L, et al. Two Brassica napus genes encoding NAC transcription factors are involved in response to high-salinity stress. Plant Cell Rep. 2012;31:1991–2003. doi: 10.1007/s00299-012-1311-3.
  • Golldack D, Lüking I, Yang O. Plant tolerance to drought and salinity: stress regulating transcription factors and their functional significance in the cellular transcriptional network. Plant Cell Rep. 2011;30:1383–1391. doi: 10.1007/s00299-011-1068-0.
  • Qin P, Wang Q, Shan F, et al. Nutritional composition and flavonoids content of flour from different buckwheat cultivars. Int J Food Sci Technol. 2010;45:951–958.
  • Lu QH, Wang YQ, Song JN, et al. Transcriptomic identification of salt-related genes and de novo assembly in common buckwheat (F. esculentum). Plant Physiol Biochem. 2018;127:299–309.
  • Germ M, Simčič T, Gaberščik A, et al. UV-B treated algae exhibiting different responses as a food source for Daphnia magna. J Plankton Res. 2004;26:1219–1228.
  • Gaberščik A, Germ M, Škof A, et al. UV-B radiation screen and respiratory potential in two aquatic primary producers: scenedesmus quadricauda and Ceratophyllum demersum. SIL Proceedings, 1922-2010. 2002;28:422–425. doi: 10.1080/03680770.2001.11902616.
  • Fabjan N, Rode J, Košir IJ, et al. Tartary buckwheat (Fagopyrum tataricum Gaertn.) as a source of dietary rutin and quercitrin. J Agric Food Chem. 2003;51:6452–6455. doi: 10.1021/jf034543e.
  • Bieza K, Lois R. An arabidopsis mutant tolerant to lethal ultraviolet-b levels shows constitutively elevated accumulation of flavonoids and other phenolics. Plant Physiol. 2001;126:1105–1115.
  • Kreft S, Štrukelj B, Gaberšc̃ik A, et al. Rutin in buckwheat herbs grown at different UV-B radiation levels: comparison of two UV spectrophotometric and an HPLC method. J Exp Bot. 2002;53:1801–1804.
  • Kočevar Glavač N, Stojilkovski K, Kreft S, et al. Determination of fagopyrins, rutin, and quercetin in Tartary buckwheat products. LWT. 2017;79:423–427.
  • Foy CD, Chaney RL, White MC. The Physiology of Metal Toxicity in Plants. Annu. Rev. Plant. Physiol. 1978;29:511–566. doi: 10.1146/annurev.pp.29.060178.002455.
  • Kochian LV. Cellular mechanisms of aluminum toxicity and resistance in plants. Annu Rev Plant Physiol Plant Mol Biol. 1995;46:237–260.
  • Hue NV, Craddock GR, Adams F. Effect of organic acids on aluminum toxicity in subsoils. Soil Sci Soc Am J. 1986;50:28–34.
  • Zheng SJ, Ma JF, Matsumoto H. Continuous secretion of organic acids is related to aluminium resistance during relatively long-term exposure to aluminium stress. Physiol Plant. 1998;103:209–214.
  • Ma JF, Zheng SJ, Matsumoto H, et al. Detoxifying aluminium with buckwheat. Nature. 1997;390:569–570. doi: 10.1038/37518.
  • Hornyák M, Płażek A, Kopeć P, et al. Photosynthetic activity of common buckwheat (Fagopyrum esculentum Moench) exposed to thermal stress. Photosynt. 2020;58:45–53. doi: 10.32615/ps.2019.140.
  • Słomka A, Michno K, Dubert F, et al. Embryological background of low seed set in distylous common buckwheat (Fagopyrum esculentum Moench) with biased morph ratios, and biostimulant-induced improvement of it. Crop Pasture Sci. 2017;68:680. doi: 10.1071/CP17009.
  • Kopeć P, Hornyák M, Pastuszak J, et al. Changes in the flower and leaf proteome of common buckwheat (Fagopyrum esculentum moench) under high temperature. Int J Mol Sci. 2021;22:2678.
  • Murai M, Ohnishi O. Population genetics of cultivated common buckwheat, Fagopyrum esculentum Moench. X. Diffusion routes revealed by RAPD markers. Genes Genet Syst. 1996;71:211–218. doi: 10.1266/ggs.71.211.
  • Konishi T, Yasui Y, Ohnishi O. Original birthplace of cultivated common buckwheat inferred from genetic relationships among cultivated populations and natural populations of wild common buckwheat revealed by AFLP analysis. Genes Genet Syst. 2005;80:113–119. doi: 10.1266/ggs.80.113.
  • Iwata H, Imon K, Tsumura Y, et al. Genetic diversity among Japanese indigenous common buckwheat (Fagopyrum esculentum) cultivars as determined from amplified fragment length polymorphism and simple sequence repeat markers and quantitative agronomic traits. Genome. 2005;48:367–377. doi: 10.1139/g04-121.
  • Yasui Y, Wang Y, Ohnishi O, et al. Amplified fragment length polymorphism linkage analysis of common buckwheat (Fagopyrum esculentum) and its wild self-pollinated relative Fagopyrum homotropicum. Genome. 2004;47:345–351. doi: 10.1139/g03-126.
  • Yabe S, Hara T, Ueno M, et al. Rapid genotyping with DNA micro-arrays for high-density linkage mapping and QTL mapping in common buckwheat (Fagopyrum esculentum Moench). Breed. Sci. 2014;64:291–299. doi: 10.1270/jsbbs.64.291.
  • Hara T, Iwata H, Okuno K, et al. QTL analysis of photoperiod sensitivity in common buckwheat by using markers for expressed sequence tags and photoperiod-sensitivity candidate genes. Breed. Sci. 2011;61:394–404. doi: 10.1270/jsbbs.61.394.
  • Watson A, Ghosh S, Williams MJ, et al. Speed breeding is a powerful tool to accelerate crop research and breeding. Nat Plants. 2018;4:23–29.
  • Yabe S, Hara T, Ueno M, et al. Potential of genomic selection in mass selection breeding of an allogamous crop: an empirical study to increase yield of common buckwheat. Front Plant Sci. 2018;9:276. doi: 10.3389/fpls.2018.00276.
  • Xu JM, Fan W, Jin JF, et al. Transcriptome analysis of Al-induced genes in buckwheat (Fagopyrum esculentum moench) root apex: new insight into al toxicity and resistance mechanisms in an Al accumulating species. Front. Plant Sci. 2017;8:1141. doi: 10.3389/fpls.2017.01141.
  • Mosa KA, Ismail A, Helmy M. Plant stress tolerance: an integrated omics approach. Switzerland: Springer International Publishing; 2017.
  • Yokoyama S, Yura K. Special issue: big data analyses in structural and functional genomics. J Struct Funct Genomics. 2016;17:67–67. doi: 10.1007/s10969-016-9213-1.
  • Lowe R, Shirley N, Bleackley M, et al. Transcriptomics technologies. PLoS Comput Biol. 2017;13:e1005457. doi: 10.1371/journal.pcbi.1005457.
  • Appleby N, Edwards D, Batley J. New technologies for ultra-high throughput genotyping in plants. Methods Mol Biol. 2009;513:19–39.
  • Vu LD, Gevaert K, De Smet I. Protein Language: post-Translational Modifications Talking to Each Other. Trends Plant Sci. 2018;23:1068–1080. doi: 10.1016/j.tplants.2018.09.004.
  • Eldakak M, Milad SIM, Nawar AI, et al. Proteomics: a biotechnology tool for crop improvement. Front Plant Sci. 2013;4:35. doi: 10.3389/fpls.2013.00035.
  • Lahner B, Gong J, Mahmoudian M, et al. Genomic scale profiling of nutrient and trace elements in Arabidopsis thaliana. Nat Biotechnol. 2003;21:1215–1221. doi: 10.1038/nbt865.
  • Van Emon JM. The omics revolution in agricultural research. J. Agric. Food Chem. 2016;64:36–44. doi: 10.1021/acs.jafc.5b04515.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.