551
Views
6
CrossRef citations to date
0
Altmetric
Review Articles

Recent updates on green synthesis of lignin nanoparticle and its potential applications in modern biotechnology

, , ORCID Icon &
Pages 774-794 | Received 17 Feb 2023, Accepted 08 May 2023, Published online: 16 Jul 2023

References

  • Salentinig S, Schubert M. Softwood lignin self-assembly for nanomaterial design. Biomacromolecules. 2017;18:2649–2653. doi: 10.1021/acs.biomac.7b00822.
  • Mastrolitti S, et al. Sustainable lignin valorization: technical lignin, processes and market development. Netherlands: IEA Bioenergy Task 42 & LignoCOST; 2021.
  • Saratale RG, Saratale GD, Ghodake G, et al. Wheat straw extracted lignin in silver nanoparticles synthesis: expanding its prophecy towards antineoplastic potency and hydrogen peroxide sensing ability. Int J Biol Macromol. 2019;128:391–400. doi: 10.1016/j.ijbiomac.2019.01.120.
  • Wang G, Xia Y, Sui W, et al. Lignin as a novel tyrosinase inhibitor: effects of sources and isolation processes. ACS Sustain Chem Eng. 2018;6:9510–9518. doi: 10.1021/acssuschemeng.8b02234.
  • Zoghlami A, Paës G. Lignocellulosic biomass: understanding recalcitrance and predicting hydrolysis. Front Chem. 2019;7:874. doi: 10.3389/fchem.2019.00874.
  • Patel A, Shah AR. Integrated lignocellulosic biorefinery: gateway for production of second generation ethanol and value added products. J Bioresour Bioprod. 2021;6:108–128. doi: 10.1016/j.jobab.2021.02.001.
  • Zhang Y, Ni S, Wang X, et al. Ultrafast adsorption of heavy metal ions onto functionalized lignin-based hybrid magnetic nanoparticles. Chem Eng J. 2019;372:82–91. doi: 10.1016/j.cej.2019.04.111.
  • Bajwa DS, Pourhashem G, Ullah AH, et al. A concise review of current lignin production, applications, products and their environmental impact. Ind Crops Prod. 2019;139:111526. doi: 10.1016/j.indcrop.2019.111526.
  • Rishikesh M, et al. A comprehensive review on lignin obtained from agro-residues: potential source of useful chemicals. Biomass Convers Bioref. 2021;13:1–24.
  • Singh AK, Bilal M, Iqbal HMN, et al. Bioremediation of lignin derivatives and phenolics in wastewater with lignin modifying enzymes: status, opportunities and challenges. Sci Total Environ. 2021;777:145988.
  • Kylili A, Fokaides P. Lignin valorisation: life cycle assessment considerations for enabling circular bioeconomy. Cyprus: Sustainable Energy Research Group, Frederick University; 2019.
  • Alipoormazandarani N, Benselfelt T, Wang L, et al. Functional lignin nanoparticles with tunable size and surface properties: fabrication, characterization, and use in layer-by-layer assembly. ACS Appl Mater Interfaces. 2021;13:26308–26317. doi: 10.1021/acsami.1c03496.
  • Hajirahimkhan S, Ragogna PJ, Xu C. Methacrylation of kraft lignin for UV-curable coatings: process optimization using response surface methodology. Biomass Bioenergy. 2019;120:332–338. doi: 10.1016/j.biombioe.2018.11.038.
  • Machado TO, Beckers SJ, Fischer J, et al. Bio-based lignin nanocarriers loaded with fungicides as a versatile platform for drug delivery in plants. Biomacromolecules. 2020;21:2755–2763. doi: 10.1021/acs.biomac.0c00487.
  • Yetisgin AA, Cetinel S, Zuvin M, et al. Therapeutic nanoparticles and their targeted delivery applications. Molecules. 2020;25:2193. doi: 10.3390/molecules25092193.
  • Lu H, Zhang S, Wang J, et al. A review on polymer and lipid-based nanocarriers and its application to nano-pharmaceutical and food-based systems. Front Nutr. 2021;8:783831. doi: 10.3389/fnut.2021.783831.
  • Riley MK, Vermerris W. Delivery of DNA into human cells by functionalized lignin nanoparticles. Materials. 2022;15:303. doi: 10.3390/ma15010303.
  • Egbuna C, Parmar VK, Jeevanandam J, et al. Toxicity of nanoparticles in biomedical application: nanotoxicology. J Toxicol. 2021;2021:1–21.
  • Lourenço A, Gominho J. Lignin as feedstock for nanoparticles production. In: Lignin-chemistry, structure, and application. Lisboa: IntechOpen; 2023. doi: 10.5772/intechopen.109267.
  • Gargulak JD, Lebo SE. Commercial use of lignin-based materials. 2000:304–320.
  • Osterberg M, Sipponen M, Kostiainen M, et al. Lignin particle based hydrogel and the method for preparation of lignin colloidal particles by solvent evaporation process. US 2022/0010077 A1; 2022.
  • Qin C, Zhang J, Liang C, et al. Method for preparing amphiphilic lignin nanoparticle based on pulping black liquor, amphiphilic lignin nanoparticle, and oil sludge detergent. AU 2020/103382 A4; 2021.
  • Astete CE, Sabliov CM, et al. Lignin-PLGA biopolymers and nanoparticles and their synthesis and use. WO 2020/076886 A1; 2020.
  • Alqahtani MSA, Alqahtani ASA, Baji RSS, et al. Method of synthesizing lignin-based nanocompositions. US 10 420 731 B1; 2019.
  • Braz DSM, Valdeir A. Process for production of lignin nanoparticles, lignin nanoparticles and use of them. BR102018074784A2; 2018.
  • Humbardzumyan A. Anti-UV emulsions stabilized with lignin and nanoparticles. US 2018/0353395 A1; 2018.
  • Schneider WD, Hahn AJP, Dillon M. Lignin nanoparticles enter the scene: a promising versatile green tool for multiple applications. Biotechnol Adv. 2020;47:107685.
  • Figueiredo P, Lintinen K, Kiriazis A, et al. In vitro evaluation of biodegradable lignin-based nanoparticles for drug delivery and enhanced antiproliferation effect in cancer cells. Biomaterials. 2017;121:97–108. doi: 10.1016/j.biomaterials.2016.12.034.
  • Österberg M, Sipponen MH, Mattos BD, et al. Spherical lignin particles: a review on their sustainability and applications. Green Chem. 2020;22:2712–2733. doi: 10.1039/D0GC00096E.
  • Sun R. Lignin source and structural characterization. ChemSusChem. 2020;13:4385–4393. doi: 10.1002/cssc.202001324.
  • Wang S, Li W, Yang Y, et al. Unlocking structure–reactivity relationships for catalytic hydrogenolysis of lignin into phenolic monomers. ChemSusChem. 2020;13:4548–4556. doi: 10.1002/cssc.202000785.
  • Rahman OU, Shi SB, Ding JH. Lignin nanoparticles: synthesis, characterization and corrosion protection performance. New J Chem. 2018;42:3415–3425.
  • Watkins D, Nuruddin M, Hosur M, et al. Extraction and characterization of lignin from different biomass resources. J Mater Res Technol. 2015;4:26–32. doi: 10.1016/j.jmrt.2014.10.009.
  • Frangville C, Rutkevičius M, Richter AP, et al. Fabrication of environmentally biodegradable lignin nanoparticles. ChemPhysChem. 2012;13:4235–4243. doi: 10.1002/cphc.201200537.
  • Tian D, Hu J, Chandra RP, et al. Valorizing recalcitrant cellulolytic enzyme lignin via lignin nanoparticles fabrication in an integrated biorefinery. ACS Sustain Chem Eng. 2017;5:2702–2710. doi: 10.1021/acssuschemeng.6b03043.
  • Lievonen M, Valle-Delgado JJ, Mattinen M-L, et al. A simple process for lignin nanoparticle preparation. Green Chem. 2016;18:1416–1422. doi: 10.1039/C5GC01436K.
  • Jiang Z, Ma Y, Guo X, et al. Sustainable production of lignin micro-/nano-particles (LMNPs) from biomass: influence of the type of biomass on their self-assembly capability and physicochemical properties. J Hazard Mater. 2021;403:123701. doi: 10.1016/j.jhazmat.2020.123701.
  • Figueiredo P, Lintinen K, Hirvonen JT, et al. Properties and chemical modifications of lignin: towards lignin-based nanomaterials for biomedical applications. Prog Mater Sci. 2018;93:233–269. doi: 10.1016/j.pmatsci.2017.12.001.
  • Myint AA, Lee HW, Seo B, et al. One pot synthesis of environmentally friendly lignin nanoparticles with compressed liquid carbon dioxide as an antisolvent. Green Chem. 2016;18:2129–2146. doi: 10.1039/C5GC02398J.
  • Chen L, Zhou X, Shi Y, et al. Green synthesis of lignin nanoparticle in aqueous hydrotropic solution toward broadening the window for its processing and application. Chem Eng J. 2018;346:217–225. doi: 10.1016/j.cej.2018.04.020.
  • Richter AP. Towards environmentally-benign nanoengineering: antimicrobial nanoparticles based on silver-infused lignin cores; 2015.
  • Yang W, Kenny JM, Puglia D. Structure and properties of biodegradable wheat gluten bionanocomposites containing lignin nanoparticles. Ind Crops Prod. 2015;74:348–356. doi: 10.1016/j.indcrop.2015.05.032.
  • Matsakas L, Karnaouri A, Cwirzen A, et al. Formation of lignin nanoparticles by combining organosolv pretreatment of birch biomass and homogenization processes. Molecules. 2018;23:1822. doi: 10.3390/molecules23071822.
  • Rao X, Liu Y, Zhang Q, et al. Assembly of organosolv lignin residues into submicron spheres: the effects of granulating in ethanol/water mixtures and homogenization. ACS Omega. 2017;2:2858–2865. doi: 10.1021/acsomega.7b00285.
  • Nypelo TE, Carrillo CA, Rojas OJ. Lignin supracolloids synthesized from (W/O) microemulsions: use in the interfacial stabilization of pickering systems and organic carriers for silver metal. Soft Matter. 2015;11:2046–2054. doi: 10.1039/C4SM02851A.
  • Wang B, Sun D, Wang H-M, et al. Green and facile preparation of regular lignin nanoparticles with high yield and their natural broad-spectrum sunscreens. ACS Sustain Chem Eng. 2019;7:2658–2666. doi: 10.1021/acssuschemeng.8b05735.
  • Gilca IA, Popa VI, Crestini C. Obtaining lignin nanoparticles by sonication. Ultrason Sonochem. 2015;23:369–375.
  • Kim S, Fernandes MM, Matamá T, et al. Chitosan–lignosulfonates sono-chemically prepared nanoparticles: characterisation and potential applications. Colloids Surf B Biointerfaces. 2013;103:1–8. doi: 10.1016/j.colsurfb.2012.10.033.
  • Chauhan PS. Lignin nanoparticles: eco-friendly and versatile tool for new era. Bioresour Technol Rep. 2020;9:100374. doi: 10.1016/j.biteb.2019.100374.
  • Tortora M, Cavalieri F, Mosesso P, et al. Ultrasound driven assembly of lignin into microcapsules for storage and delivery of hydrophobic molecules. Biomacromolecules. 2014;15:1634–1643. doi: 10.1021/bm500015j.
  • Yiamsawas D, Baier G, Thines E, et al. Biodegradable lignin nanocontainers. RSC Adv. 2014;4:11661–11663. doi: 10.1039/C3RA47971D.
  • Chen N, Dempere LA, Tong Z. Synthesis of pH-responsive lignin-based nanocapsules for controlled release of hydrophobic molecules. ACS Sustain Chem Eng. 2016;4:5204–5211. doi: 10.1021/acssuschemeng.6b01209.
  • Kai D, Jiang S, Low ZW, et al. Engineering highly stretchable lignin-based electrospun nanofibers for potential biomedical applications. J Mater Chem B. 2015;3:6194–6204. doi: 10.1039/C5TB00765H.
  • Liu X, Yin H, Zhang Z, et al. Functionalization of lignin through ATRP grafting of poly (2-dimethylaminoethyl methacrylate) for gene delivery. Colloids Surf B Biointerfaces. 2015;125:230–237. doi: 10.1016/j.colsurfb.2014.11.018.
  • Qian Y, Deng Y, Qiu X, et al. Formation of uniform colloidal spheres from lignin, a renewable resource recovered from pulping spent liquor. Green Chem. 2014;16:2156–2163. doi: 10.1039/c3gc42131g.
  • Rangan A, Manchiganti MV, Thilaividankan RM, et al. Novel method for the preparation of lignin-rich nanoparticles from lignocellulosic fibers. Ind Crops Prod. 2017;103:152–160. doi: 10.1016/j.indcrop.2017.03.037.
  • Tian D, Hu J, Bao J, et al. Lignin valorization: lignin nanoparticles as high-value bio-additive for multifunctional nanocomposites. Biotechnol Biofuels. 2017;10:1–11. doi: 10.1186/s13068-017-0876-z.
  • Li H, Deng Y, Liu B, et al. Preparation of nanocapsules via the self-assembly of kraft lignin: a totally green process with renewable resources. ACS Sustain Chem Eng. 2016;4:1946–1953. doi: 10.1021/acssuschemeng.5b01066.
  • Spender J, Demers AL, Xie X, et al. Method for production of polymer and carbon nanofibers from water-soluble polymers. Nano Lett. 2012;12:3857–3860. doi: 10.1021/nl301983d.
  • Peresin MS, Habibi Y, Vesterinen A-H, et al. Effect of moisture on electrospun nanofiber composites of poly (vinyl alcohol) and cellulose nanocrystals. Biomacromolecules. 2010;11:2471–2477. doi: 10.1021/bm1006689.
  • Ruiz-Rosas R, Bedia J, Lallave M, et al. The production of submicron diameter carbon fibers by the electrospinning of lignin. Carbon. 2010;48:696–705. doi: 10.1016/j.carbon.2009.10.014.
  • Dallmeyer I, Ko F, Kadla JF. Electrospinning of technical lignins for the production of fibrous networks. J Wood Chem Technol. 2010;30:315–329. doi: 10.1080/02773813.2010.527782.
  • Buesser B, Pratsinis SE. Design of nanomaterial synthesis by aerosol processes. Annu Rev Chem Biomol Eng. 2012;3:103–127. doi: 10.1146/annurev-chembioeng-062011-080930.
  • Ago M, Huan S, Borghei M, et al. High-throughput synthesis of lignin particles (∼30 nm to ∼2 μm) via aerosol flow reactor: size fractionation and utilization in pickering emulsions. ACS Appl Mater Interfaces. 2016;8:23302–23310. doi: 10.1021/acsami.6b07900.
  • Nair SS, Sharma S, Pu Y, et al. High shear homogenization of lignin to nanolignin and thermal stability of nanolignin-Polyvinyl alcohol blends. ChemSusChem. 2014;7:3513–3520. doi: 10.1002/cssc.201402314.
  • Zimniewska M, Kozłowski R, Batog J. Nanolignin modified linen fabric as a multifunctional product. Mol Cryst Liq Cryst. 2008;484:43/[409]–50/[416]. doi: 10.1080/15421400801903395.
  • Deng Y, Zhao H, Qian Y, et al. Hollow lignin azo colloids encapsulated avermectin with high anti-photolysis and controlled release performance. Ind Crops Prod. 2016;87:191–197. doi: 10.1016/j.indcrop.2016.03.056.
  • Li Y, Wu M, Wang B, et al. Synthesis of magnetic lignin-based hollow microspheres: a highly adsorptive and reusable adsorbent derived from renewable resources. ACS Sustain Chem Eng. 2016;4:5523–5532. doi: 10.1021/acssuschemeng.6b01244.
  • Richter AP, Bharti B, Armstrong HB, et al. Synthesis and characterization of biodegradable lignin nanoparticles with tunable surface properties. Langmuir. 2016;32:6468–6477. doi: 10.1021/acs.langmuir.6b01088.
  • Mishra PK, Ekielski A. The self-assembly of lignin and its application in nanoparticle synthesis: a short review. Nanomaterials. 2019;9:243. doi: 10.3390/nano9020243.
  • Iravani S, Varma RS. Greener synthesis of lignin nanoparticles and their applications. Green Chem. 2020;22:612–636. doi: 10.1039/C9GC02835H.
  • Moreno A, Sipponen MH. Lignin-based smart materials: a roadmap to processing and synthesis for current and future applications. Mater Horiz. 2020;7:2237–2257. doi: 10.1039/D0MH00798F.
  • Wang EC, Wang AZ. Nanoparticles and their applications in cell and molecular biology. Integr Biol. 2014;6:9–26. doi: 10.1039/c3ib40165k.
  • Cerrutti BM, Moraes ML, Pulcinelli SH, et al. Lignin as immobilization matrix for HIV p17 peptide used in immunosensing. Biosens Bioelectron. 2015;71:420–426. doi: 10.1016/j.bios.2015.04.054.
  • Dai L, Liu R, Hu L-Q, et al. Lignin nanoparticle as a novel green carrier for the efficient delivery of resveratrol. ACS Sustain Chem Eng. 2017;5:8241–8249. doi: 10.1021/acssuschemeng.7b01903.
  • Alqahtani MS, Alqahtani A, Al-Thabit A, et al. Novel lignin nanoparticles for oral drug delivery. J Mater Chem B. 2019;7:4461–4473. doi: 10.1039/C9TB00594C.
  • Vinardell M, Mitjans M. Lignins and their derivatives with beneficial effects on human health. Int J Mol Sci. 2017;18:1219. doi: 10.3390/ijms18061219.
  • Barapatre A, Meena AS, Mekala S, et al. In vitro evaluation of antioxidant and cytotoxic activities of lignin fractions extracted from Acacia nilotica. Int J Biol Macromol. 2016;86:443–453. doi: 10.1016/j.ijbiomac.2016.01.109.
  • Liu R, Dai L, Xu C, et al. Lignin-based micro and nanomaterials and their composites in biomedical applications. ChemSusChem. 2020;13:4266–4283. doi: 10.1002/cssc.202000783.
  • Capecchi E, Piccinino D, Bizzarri BM, et al. Enzyme-Lignin nanocapsules are sustainable catalysts and vehicles for the preparation of unique polyvalent bioinks. Biomacromolecules. 2019;20:1975–1988. doi: 10.1021/acs.biomac.9b00198.
  • Piccinino D, Capecchi E, Delfino I, et al. Green and scalable preparation of colloidal suspension of lignin nanoparticles and its application in eco-friendly sunscreen formulations. ACS Omega. 2021;6:21444–21456. doi: 10.1021/acsomega.1c02268.
  • Özel M, Demir F, Aikebaier A, et al. Why does wood not get contact charged? Lignin as an antistatic additive for common polymers. Chem Mater. 2020;32:7438–7444. doi: 10.1021/acs.chemmater.0c02421.
  • Yang Y, Fang Z, Chen X, et al. An overview of pickering emulsions: solid-particle materials, classification, morphology, and applications. Front Pharmacol. 2017;8:287. doi: 10.3389/fphar.2017.00287.
  • Bai L, Greca LG, Xiang W, et al. Adsorption and assembly of cellulosic and lignin colloids at oil/water interfaces. Langmuir. 2019;35:571–588. doi: 10.1021/acs.langmuir.8b01288.
  • Dai L, Li Y, Kong F, et al. Lignin-based nanoparticles stabilized pickering emulsion for stability improvement and thermal-controlled release of trans-resveratrol. ACS Sustain Chem Eng. 2019;7:13497–13504. doi: 10.1021/acssuschemeng.9b02966.
  • Low LE, Teh KC, Siva SP, et al. Lignin nanoparticles: the next green nanoreinforcer with wide opportunity. Environ Nanotechnol Monit Manage. 2021;15:100398. doi: 10.1016/j.enmm.2020.100398.
  • Gregorova A, Redik S, Sedlarik S, et al. Lignin-containing polyethylene films with antibacterial activity. Proceedings of the 3rd International Conference on Thomson Reuters of NANOCON; Brno, Czech Republic; 2011;9:21–23.
  • Kabir AS, Yuan ZS, Kuboki T, et al. Development of lignin-based antioxidants for polymers. In: Production of materials from sustainable biomass resources. Singapore: Springer; 2019. p. 39–59.
  • Morena AG, Bassegoda A, Hoyo J, et al. Hybrid tellurium–lignin nanoparticles with enhanced antibacterial properties. ACS Appl Mater Interfaces. 2021;13:14885–14893. doi: 10.1021/acsami.0c22301.
  • Espinoza-Acosta JL, Torres-Chávez PI, Ramírez-Wong B, et al. Antioxidant, antimicrobial, and antimutagenic properties of technical lignins and their applications. Bioresources. 2016;11:5452–5481. doi: 10.15376/biores.11.2.Espinoza_Acosta.
  • Yearla SR, Padmasree K. Preparation and characterisation of lignin nanoparticles: evaluation of their potential as antioxidants and UV protectants. J Exp Nanosci. 2016;11:289–302. doi: 10.1080/17458080.2015.1055842.
  • Zhang X, Yang M, Yuan Q, et al. Controlled preparation of corncob lignin nanoparticles and their size-dependent antioxidant properties: toward high value utilization of lignin. ACS Sustain Chem Eng. 2019;7:17166–17174. doi: 10.1021/acssuschemeng.9b03535.
  • Yang W, Fortunati E, Dominici F, et al. Effect of cellulose and lignin on disintegration, antimicrobial and antioxidant properties of PLA active films. Int J Biol Macromol. 2016;89:360–368. doi: 10.1016/j.ijbiomac.2016.04.068.
  • Domenek S, Louaifi A, Guinault A, et al. Potential of lignins as antioxidant additive in active biodegradable packaging materials. J Polym Environ. 2013;21:692–701. doi: 10.1007/s10924-013-0570-6.
  • Qian Y, Zhong X, Li Y, et al. Fabrication of uniform lignin colloidal spheres for developing natural broad-spectrum sunscreens with high sun protection factor. Ind Crops Prod. 2017;101:54–60. doi: 10.1016/j.indcrop.2017.03.001.
  • Zikeli F, Vinciguerra V, D’Annibale A, et al. Preparation of lignin nanoparticles from wood waste for wood surface treatment. Nanomaterials. 2019;9:281. doi: 10.3390/nano9020281.
  • Gutiérrez-Hernández JM, Escalante A, Murillo-Vázquez RN, et al. Use of Agave tequilana-lignin and zinc oxide nanoparticles for skin photoprotection. J Photochem Photobiol B. 2016;163:156–161. doi: 10.1016/j.jphotobiol.2016.08.027.
  • Kai D, Ren W, Tian L, et al. Engineering poly (lactide)–lignin nanofibers with antioxidant activity for biomedical application. ACS Sustain Chem Eng. 2016;4:5268–5276. doi: 10.1021/acssuschemeng.6b00478.
  • Diao B, Zhang Z, Zhu J, et al. Biomass-based thermogelling copolymers consisting of lignin and grafted poly (N-isopropylacrylamide), poly (ethylene glycol), and poly (propylene glycol). RSC Adv. 2014;4:42996–43003. doi: 10.1039/C4RA08673B.
  • Ponomarev N, Pastushok O, Repo E, et al. Lignin-based magnesium hydroxide nanocomposite. synthesis and application for the removal of potentially toxic metals from aqueous solution. ACS Appl Nano Mater. 2019;2:5492–5503. doi: 10.1021/acsanm.9b01083.
  • Gupta AK, Mohanty S, Nayak SK. Influence of addition of vapor grown carbon fibers on mechanical, thermal and biodegradation properties of lignin nanoparticle filled bio-poly (trimethylene terephthalate) hybrid nanocomposites. RSC Adv. 2015;5:56028–56036. doi: 10.1039/C5RA07828H.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.