454
Views
4
CrossRef citations to date
0
Altmetric
Review Articles

Bioactive compounds from Cordyceps and their therapeutic potential

, & ORCID Icon
Pages 753-773 | Received 27 Jan 2023, Accepted 11 May 2023, Published online: 30 Jul 2023

References

  • Sabaratnam V, Kah-Hui W, Naidu M, et al. Neuronal health – can culinary and medicinal mushrooms help? J Tradit Complement Med. 2013;3:62–68. doi: 10.4103/2225-4110.106549.
  • Sharma S. Trade of Cordyceps sinensis from high altitudes of the Indian Himalaya: conservation and biotechnological priorities. Curr Sci. 2004;86:1614–1619.
  • Li SP, Yang FQ, Tsim KWK. Quality control of Cordyceps sinensis, a valued traditional Chinese medicine. J Pharm Biomed Anal. 2006;41:1571–1584. doi: 10.1016/j.jpba.2006.01.046.
  • Bhetwal S, Chatterjee S, Samrat RR, et al. Cordyceps sinensis: peculiar caterpillar mushroom, salutary in its medicinal and restorative capabilities. Pharma Innov J. 2021;10:1045–1054.
  • Yan J, Wang W, Wu J. Recent advances in Cordyceps sinensis polysaccharides: mycelial fermentation, isolation, structure, and bioactivities: a review. J Funct Foods. 2014;6:33–47. doi: 10.1016/j.jff.2013.11.024.
  • Winkler D. A precious parasitic fungus infecting Tibet Daniel. Br Birds. 2004;97:231–237. doi: 10.1016/j.fl.
  • Winkler D. Yartsa Gunbu (Cordyceps sinensis) and the fungal commodification of Tibet’s rural economy. Econ Bot. 2008;62:291–305. doi: 10.1007/s12231-008-9038-3.
  • Panda AK, Swain KC. Traditional uses and medicinal potential of Cordyceps sinensis of Sikkim. J Ayurveda Integr Med. 2011;2:9–13. doi: 10.4103/0975-9476.78183.
  • Holliday JC, Cleaver M. Medicinal value of the caterpillar fungi species of the genus Cordyceps (Fr.) link (Ascomycetes). A review. Int J Med Mushr. 2008;10:219–234. doi: 10.1615/IntJMedMushr.v10.i3.30.
  • Olatunji OJ, Tang J, Tola A, et al. The genus Cordyceps: an extensive review of its traditional uses, phytochemistry and pharmacology. Fitoterapia. 2018;129:293–316. doi: 10.1016/j.fitote.2018.05.010.
  • Zhou X, Gong Z, Su Y, et al. Cordyceps fungi: natural products, pharmacological functions and developmental products. J Pharm Pharmacol. 2009;61:279–291. doi: 10.1211/jpp/61.03.0002.
  • Zhu JS, Halpern GM, Jones K. The scientific rediscovery of an ancient Chinese herbal medicine : Cordyceps sinenesis. J Altern Complement Med. 1998;4:289–303. doi: 10.1089/acm.1998.4.3-289.
  • Xiao J-H, Q Y, Xiong Q. Nucleosides, a valuable chemical marker for quality control in traditional Chinese medicine Cordyceps. Recent Pat Biotechnol. 2013;7:153–166. doi: 10.2174/1872208311307020007.
  • Yang FQ, Li DQ, Feng K, et al. Determination of nucleotides, nucleosides and their transformation products in Cordyceps by ion-pairing reversed-phase liquid chromatography-mass spectrometry. J Chromatogr A. 2010;1217:5501–5510. doi: 10.1016/j.chroma.2010.06.062.
  • Yang FQ, Guan J, Li SP. Fast simultaneous determination of 14 nucleosides and nucleobases in cultured Cordyceps using ultra-performance liquid chromatography. Talanta. 2007;73:269–273. doi: 10.1016/j.talanta.2007.03.034.
  • Cheng W, Zhang X, Song Q, et al. Determination and comparative analysis of 13 nucleosides and nucleobases in natural fruiting body of Ophiocordyceps sinensis and its substitutes. Mycology. 2017;8:318–326. doi: 10.1080/21501203.2017.1385546.
  • Yuan JP, Zhao SY, Wang JH, et al. Distribution of nucleosides and nucleobases in edible fungi. J Agric Food Chem. 2008;56:809–815. doi: 10.1021/jf0719205.
  • Fan H, Yang FQ, Li SP. Determination of purine and pyrimidine bases in natural and cultured Cordyceps using optimum acid hydrolysis followed by high performance liquid chromatography. J Pharm Biomed Anal. 2007;45:141–144. doi: 10.1016/j.jpba.2007.02.032.
  • Ikeda R, Nishimura M, Sun Y, et al. Simple HPLC-UV determination of nucleosides and its application to the authentication of Cordyceps and its allies. Biomed Chromatogr. 2008;22:630–636. doi: 10.1002/bmc.
  • Gu YX, Wang ZS, Li SX, et al. Effect of multiple factors on accumulation of nucleosides and bases in Cordyceps militaris. Food Chem. 2007;102:1304–1309. doi: 10.1016/j.foodchem.2006.07.018.
  • Phan CW, Wang JK, Cheah SC, et al. A review on the nucleic acid constituents in mushrooms: nucleobases, nucleosides and nucleotides. Crit Rev Biotechnol. 2018;38:762–777. doi: 10.1080/07388551.2017.1399102.
  • Cunningham KG, Manson W, Spring FS, et al. Cordycepin, a metabolic product isolated from cultures of Cordyceps militaris. Nature. 1950;166:949–949. doi: 10.1038/166949a0.
  • Tuli HS, Sharma AK, Sandhu SS, et al. Cordycepin: a bioactive metabolite with therapeutic potential. Life Sci. 2013;93:863–869. doi: 10.1016/j.lfs.2013.09.030.
  • Kaczka EA, Dulaney EL, Gitterman CO, et al. Isolation and inhibitory effects on KB cell cultures of 3′-deoxyadenosine from Aspergillus nidulans (Eidam) wint. Biochem Biophys Res Commun. 1964;14:452–455. doi: 10.1016/0006-291X(64)90085-3.
  • Zhao X, Zhang G, Li C, et al. Cordycepin and pentostatin biosynthesis gene identified through transcriptome and proteomics analysis of Cordyceps kyushuensis Kob. Microbiol Res. 2019;218:12–21. doi: 10.1016/j.micres.2018.09.005.
  • Lennon MB, Suhadolnik RJ. Biosynthesis of 3’-deoxyadenosine by Cordyceps militaris. mechanism of reduction. Biochim Biophys Acta. 1976;425:532–536. doi: 10.1016/0005-2787(76)90017-4.
  • Xia Y, Luo F, Shang Y, et al. Fungal Cordycepin biosynthesis is coupled with the production of the safeguard molecule pentostatin. Cell Chem Biol. 2017;24:1479–1489.e4. doi: 10.1016/j.chembiol.2017.09.001.
  • Wellham PAD, Kim D-H, Brock M, et al. Coupled biosynthesis of Cordycepin and pentostatin in Cordyceps militaris: implications for fungal biology and medicinal natural products. Ann Transl Med. 2019;7: S85. doi: 10.21037/atm.2019.04.25.
  • Zhang Q, Liu Y. The strategies for increasing cordycepin production of Cordyceps militaris by liquid fermentation. fungal genom biol. 2016;6:1–5. doi: 10.4172/2165-8056.1000134.
  • Lin S, Liu Z-Q, Xue Y-P, et al. Biosynthetic pathway analysis for improving the Cordycepin and Cordycepic acid production in Hirsutella sinensis. Appl Biochem Biotechnol. 2016;179:633–649. doi: 10.1007/s12010-016-2020-0.
  • Shimura K, Okada M, Shiraki H. IMP Dehydrogenase. I. Studies on regulatory properties of crude tissue extracts based on an improved assay method. The Journal of Biochemistry. 1983;94:1595–1603. doi: 10.1093/oxfordjournals.jbchem.a134507.
  • Fan DD, Wang W, Zhong JJ. Enhancement of Cordycepin production in submerged cultures of Cordyceps militaris by addition of ferrous sulfate. Biochem Eng J. 2012;60:30–35. doi: 10.1016/j.bej.2011.09.014.
  • Wolan DW, Cheong CG, Greasley SE, et al. Structural insights into the human and Avian IMP cyclohydrolase mechanism via crystal structures with the bound XMP inhibitor. Biochemistry. 2004;43:1171–1183. doi: 10.1021/bi030162i.
  • Wu P, Wan D, Xu G, et al. An unusual protector-Protégé Strategy for the biosynthesis of purine nucleoside antibiotics. Cell Chem Biol. 2017;24:171–181. doi: 10.1016/j.chembiol.2016.12.012.
  • Shao LW, Huang LH, Yan S, et al. Cordycepin induces apoptosis in human liver cancer HepG2 cells through extrinsic and intrinsic signaling pathways. Oncol Lett. 2016;12:995–1000. doi: 10.3892/ol.2016.4706.
  • Cao HL, Liu ZJ, Chang Z. Cordycepin induces apoptosis in human bladder cancer cells via activation of A3 adenosine receptors. Tumour Biol. 2017;39:101042831770691. doi: 10.1177/1010428317706915.
  • Hwang I-H, Oh SY, Jang H-J, et al. Cordycepin promotes apoptosis in renal carcinoma cells by activating the MKK7-JNK signaling pathway through inhibition of c-FLIPL expression. PLoS One. 2017;12:e0186489. doi: 10.1371/journal.pone.0186489.
  • Hsu PY, Lin YH, Yeh EL, et al. Cordycepin and a preparation from Cordyceps militaris inhibit malignant transformation and proliferation by decreasing EGFR and IL-17RA signaling in a murine oral cancer model. Oncotarget. 2017;8:93712–93728. doi: 10.18632/oncotarget.21477.
  • Joo JC, Hwang JH, Jo E, et al. Cordycepin induces apoptosis by caveolin-1-mediated JNK regulation of Foxo3a in human lung adenocarcinoma. Oncotarget. 2017;8:12211–12224. doi: 10.18632/oncotarget.14661.
  • Liao Y, Ling J, Zhang G, et al. Cordycepin induces cell cycle arrest and apoptosis by inducing DNA damage and up-regulation of p53 in leukemia cells. Cell Cycle. 2015;14:761–771. doi: 10.1080/15384101.2014.1000097.
  • Kim SO, Cha H-J, Park C, et al. Cordycepin induces apoptosis in human bladder cancer T24 cells through ROS-dependent inhibition of the PI3K/Akt signaling pathway. Biosci Trends. 2019;13:324–333. doi: 10.5582/bst.2019.01214.
  • Tao X, Ning Y, Zhao X, et al. The effects of Cordycepin on the cell proliferation, migration and apoptosis in human lung cancer cell lines A549 and NCI-H460. J Pharm Pharmacol. 2016;68:901–911. doi: 10.1111/jphp.12544.
  • Cui ZY, Park SJ, Jo E, et al. Cordycepin induces apoptosis of human ovarian cancer cells by inhibiting CCL5-mediated Akt/NF-κB signaling pathway. Cell Death Discov. 2018;4. doi: 10.1038/s41420-018-0063-4.
  • Zhang Y, Zhang XX, Yuan RY, et al. Cordycepin induces apoptosis in human pancreatic cancer cells via the mitochondrial-mediated intrinsic pathway and suppresses tumor growth in vivo. Onco Targets Ther. 2018;11:4479–4490. doi: 10.2147/OTT.S164670.
  • Xu J-C, Zhou X-P, Wang X-A, et al. Cordycepin induces apoptosis and G2/M phase arrest through the ERK pathways in esophageal cancer cells. J Cancer. 2019;10:2415–2424. doi: 10.7150/jca.32071.
  • Sun T, Dong W, Jiang G, et al. Cordyceps militaris improves chronic kidney disease by affecting TLR4/NF-κB redox signaling pathway. Oxid Med Cell Longevity. 2019;2019:1–16. vol. doi: 10.1155/2019/7850863.
  • Panya A, Songprakhon P, Panwong S, et al. Cordycepin inhibits virus replication in dengue virus-infected vero cells. Molecules. 2021;26:3118. doi: 10.3390/molecules26113118.
  • Wang H-B, Duan M-X, Xu M, et al. Cordycepin ameliorates cardiac hypertrophy via activating the AMPKα pathway. J Cell Mol Med. 2019;23:5715–5727. doi: 10.1111/jcmm.14485.
  • Yu H, Hong X, Liu L, et al. Cordycepin decreases ischemia/reperfusion injury in diabetic hearts via upregulating AMPK/Mfn2-dependent mitochondrial fusion. Front. Pharmacol. 2021;12:1–14. doi: 10.3389/fphar.2021.754005.
  • Chen Z-H, Han Y-Y, Shang Y-J, et al. Cordycepin ameliorates synaptic dysfunction and dendrite morphology damage of hippocampal CA1 via A1R in cerebral ischemia. Front. Cell. Neurosci. 2021;15:1–17. doi: 10.3389/fncel.2021.783478.
  • Quy TN, Xuan TD, Andriana Y, et al. Cordycepin isolated from Cordyceps militaris: its newly discovered herbicidal property and potential plant-based novel alternative to glyphosate. Molecules. 2019;24(16). doi: 10.3390/molecules24162901.
  • Phull AR, Dhong KR, Park HJ. Lactic acid bacteria fermented cordyceps militaris (GRC-SC11) suppresses IgE mediated mast cell activation and type I hypersensitive allergic murine model. Nutrients. 2021;13:3849. doi: 10.3390/nu13113849.
  • Yang FQ, Li SP. Effects of sample preparation methods on the quantification of nucleosides in natural and cultured Cordyceps. J Pharm Biomed Anal. 2008;48:231–235. doi: 10.1016/j.jpba.2008.05.012.
  • Kitakaze M, Hori M. Adenosine therapy: a new approach to chronic heart failure. Expert Opin Investig Drugs. 2000;9:2519–2535. doi: 10.1517/13543784.9.11.2519.
  • Nakav S, Chaimovitz C, Sufaro Y, et al. Anti-inflammatory preconditioning by agonists of adenosine A1 receptor. PLoS One. 2008;3:e2107. doi: 10.1371/journal.pone.0002107.
  • Manfredi JP, Sparks HV. Adenosine’s role in coronary vasodilation induced by atrial pacing and norepinephrine. Am J Physiol. 1982;243: h 536–H545. doi: 10.1152/ajpheart.1982.243.4.H536.
  • Ontyd J, Schrader J. Measurement of adenosine, inosine, and hypoxanthine in human plasma. J Chromatogr. 1984;307:404–409. doi: 10.1016/S0378-4347(00)84113-4.
  • Tsai YJ, Lin LC, Tsai TH. Pharmacokinetics of adenosine and cordycepin, a bioactive constituent of cordyceps sinensis in rat. J Agric Food Chem. 2010;58:4638–4643. doi: 10.1021/jf100269g.
  • Yang D, Yaguchi T, Yamamoto H, et al. Intracellularly transported adenosine induces apoptosis in HuH-7 human hepatoma cells by downregulating c-FLIP expression causing caspase-3/-8 activation. Biochem Pharmacol. 2007;73:1665–1675. doi: 10.1016/j.bcp.2007.01.020.
  • Yang D, Yaguchi T, Lim CR, et al. Tuning of apoptosis-mediator gene transcription in HepG2 human hepatoma cells through an adenosine signal. Cancer Lett. 2010;291:225–229. doi: 10.1016/j.canlet.2009.10.016.
  • Gessi S, Merighi S, Borea PA. Targeting adenosine receptors to prevent inflammatory skin diseases. Exp Dermatol. 2014;23:553–554. doi: 10.1111/exd.12474.
  • Coelho JE, Alves P, Canas PM, et al. Overexpression of adenosine A2A receptors in rats: effects on depression, locomotion, and anxiety. Front. Psychiatry. 2014;5:2509–2512. doi: 10.3389/fpsyt.2014.00067.
  • Furuya T, Hirotani M, Matsuzawa M. N6-(2-hydroxyethyl)adenosine, a biologically active compound from cultured mycelia of Cordyceps and Isaria species. Phytochemistry. 1983;22:2509–2512. doi: 10.1016/0031-9422(83)80150-2.
  • Durcan MJ, Morgan PF. Evidence for adenosine A2 receptor involvement in the hypomobility effects of adenosine analogues in mice. Eur J Pharmacol. 1989;168:285–290. doi: 10.1016/0014-2999(89)90789-9.
  • Cui F, Wang J, Cui Y, et al. Investigation of interaction between human serum albumin and N6-(2-hydroxyethyl)-adenosine by fluorescence spectroscopy and molecular modelling. Luminescence. 2007;22:546–553. doi: 10.1002/bio.
  • Zeng W-B, Yu H, Ge F, et al. Distribution of nucleosides in populations of Cordyceps cicadae. Molecules. 2014;19:6123–6141. doi: 10.3390/molecules19056123.
  • Zou J, Wu L, He ZM, et al. Determination of the main nucleosides and nucleobases in natural and cultured ophiocordyceps xuefengensis. Molecules. 2017;22:1530. doi: 10.3390/molecules22091530.
  • Shaoping L, Ping L, Hui J, et al. The nucleosides contents and their variation in natural Cordyceps sinensis and cultured Cordyceps mycelia. J Chin Pharmaceut Sci. 2001;10:175–179.
  • Wang J, Chen S, Nie S, et al. Structural characterization and chain conformation of water-soluble β-glucan from wild Cordyceps sinensis. J Agric Food Chem. 2019;67:12520–12527. doi: 10.1021/acs.jafc.9b05340.
  • Smiderle FR, Baggio CH, Borato DG, et al. Anti-inflammatory properties of the medicinal mushroom Cordyceps militaris might be related to its linear (1→3)-β-D-glucan. PLoS One. 2014;9:e110266. doi: 10.1371/journal.pone.0110266.
  • Seitz LM, Sauer DB, Burroughs R, et al. Ergosterol as a measure of fungal growth. Phytopathology. 1979;69:1202. doi: 10.1094/Phyto-69-1202.
  • Yuan JP, Wang JH, Liu X, et al. Simultaneous determination of free ergosterol and ergosteryl esters in Cordyceps sinensis by HPLC. Food Chem. 2007;105:1755–1759. doi: 10.1016/j.foodchem.2007.04.070.
  • Keller AC, Keller J, Maillard MP, et al. A lanostane-type steroid from the fungus Ganoderma carnosum. Phytochemistry. 1997;46:963–965. doi: 10.1016/S0031-9422(97)00381-6.
  • Bok JW, Lermer L, Chilton J, et al. Antitumor sterols from the mycelia of Cordyceps sinensis. Phytochemistry. 1999;51:891–898. doi: 10.1016/S0031-9422(99)00128-4.
  • Matsuda H, Akaki J, Nakamura S, et al. Apoptosis-inducing effects of sterols from the dried powder of cultured mycelium of Cordyceps sinensis. Chem Pharm Bull (Tokyo). 2009;57:411–414. doi: 10.1248/cpb.57.411.
  • Yang ML, Kuo PC, Hwang TL, et al. Anti-inflammatory principles from Cordyceps sinensis. J Nat Prod. 2011;74:1996–2000. doi: 10.1021/np100902f.
  • Xiao J, Zhong J. Secondary metabolite steroids isolated from medicinal entomogenous mushroom Cordyceps jiangxiensis mycelium. Nat Prod. 2011;7:118–123.
  • Wang J-h, Zhang Z-l, Wang Y-q, et al. Chemical constituents from mycelia and spores of fungus Cordyceps cicadae. Chin Herbal Med. 2017;9:188–192. doi: 10.1016/s1674-6384(17)60094-7.
  • Hsu TH, Shiao LH, Hsieh C, et al. A comparison of the chemical composition and bioactive ingredients of the Chinese medicinal mushroom DongChongXiaCao, its counterfeit and mimic, and fermented mycelium of Cordyceps sinensis. Food Chem. 2002;78:463–469. doi: 10.1016/S0308-8146(02)00158-9.
  • Hu Z, Ye M, Xia L, et al. Purification and characterization of an antibacterial protein from the cultured mycelia of Cordyceps sinensis. Wuhan Univ J Nat Sci. 2006;11:709–714. doi: 10.1007/BF02836695.
  • Kim JS, et al. A fibrinolytic enzyme from the medicinal mushroom Cordyceps militaris. J Microbiol. 2006;44:622–631.
  • Hua-Ping Li SW, Hu Z, Yuan J-l, et al. A novel extracellular protease with fibrinolytic activity from the culture supernatant of Cordyceps sinensis: purification and characterization. Phytother Res. 2007;21:1234–1241. doi: 10.1002/ptr.
  • Choi D, Cha W-S, Park N, et al. Purification and characterization of a novel fibrinolytic enzyme from fruiting bodies of Korean Cordyceps militaris. Bioresour Technol. 2011;102:3279–3285. doi: 10.1016/j.biortech.2010.10.002.
  • Jung EC, Kim KD, Bae CH, et al. A mushroom lectin from ascomycete Cordyceps militaris. Biochim Biophys Acta. 2007;1770:833–838. doi: 10.1016/j.bbagen.2007.01.005.
  • Wang S-X, Liu Y, Zhang G-Q, et al. Cordysobin, a novel alkaline serine protease with HIV-1 reverse transcriptase inhibitory activity from the medicinal mushroom Cordyceps sobolifera. J Biosci Bioeng. 2012;113:42–47. doi: 10.1016/j.jbiosc.2011.09.005.
  • Wong JH, Ng TB, Wang H, et al. Cordymin, an antifungal peptide from the medicinal fungus Cordyceps militaris. Phytomedicine. 2011;18:387–392. doi: 10.1016/j.phymed.2010.07.010.
  • Jia JM, Ma XC, Wu CF, et al. Cordycedipeptide A, a new cyclodipeptide from the culture liquid of Cordyceps sinensis (BERK.) SACC. Chem Pharm Bull (Tokyo). 2005;53:582–583. doi: 10.1248/cpb.53.582.
  • Jia JM, Tao HH, Feng BM. Cordyceamides A and B from the culture liquid of Cordyceps sinensis (Berk.) sacc. Chem Pharm Bull (Tokyo). 2009;57:99–101. doi: 10.1248/cpb.57.99.
  • Liu Y, Wang J, Wang W, et al. The chemical constituents and pharmacological actions of Cordyceps sinensis. Evidence-Based Complement Altern Med. 2015;2015:1–12. vol. doi: 10.1155/2015/575063.
  • Hur H. Chemical ingredients of Cordyceps militaris. Mycobiology. 2008;36:233–235. doi: 10.4489/MYCO.2008.36.4.233.
  • Yang FQ, Feng K, Zhao J, et al. Analysis of sterols and fatty acids in natural and cultured Cordyceps by one-step derivatization followed with gas chromatography-mass spectrometry. J Pharm Biomed Anal. 2009;49:1172–1178. doi: 10.1016/j.jpba.2009.02.025.
  • Chatterjee R, Srinivasan KS, Maiti PC. Cordyceps sinesis (Berkeley) Saccardo: structure of cordycepic acid. J Am Pharm Assoc Am Pharm Assoc. 1957;46:114–118. doi: 10.1002/jps.3030460211.
  • Sprecher M, Sprinson DB. A reinvestigation of the structure of Cordycepic acid. J. Org. Chem. 1963;28:2490–2491. doi: 10.1021/jo01044a536.
  • Wang J, Chen H, Li W, et al. Cordyceps acid alleviates lung cancer in nude mice. J Biochem Mol Toxicol. 2021;35:1–6. doi: 10.1002/jbt.22670.
  • Kneifel H, Konig WA, Loeffler W, et al. Ophiocordin, an antifungal antibiotic of Cordyceps ophioglossoides. Arch Microbiol. 1977;113:121–130. doi: 10.1007/BF00428591.
  • Isaka M, Kongsaeree P, Thebtaranonth Y. Bioxanthracenes from the insect pathogenic fungus Cordyceps pseudomilitaris BCC 1620: II. Structure elucidation. J Antibiot (Tokyo). 2001;54:36–43. doi: 10.7164/antibiotics.54.36.
  • Dong JZ, Wang SH, Ai XR, et al. Composition and characterization of cordyxanthins from Cordyceps militaris fruit bodies. J Funct Foods. 2013;5:1450–1455. doi: 10.1016/j.jff.2013.06.002.
  • Joshi M, Sagar A, Kanwar S, et al. Anticancer, antibacterial and antioxidant activities of Cordyceps militaris. Indian J Exp Biol (IJEB). 2019;57:15–20. Available at: http://nopr.niscair.res.in/handle/123456789/45567.
  • Krasnoff SB, Reátegui RF, Wagenaar MM, et al. Cicadapeptins I and II: new aib-containing peptides from the entomopathogenic fungus Cordyceps heteropoda. J Nat Prod. 2005;68:50–55. doi: 10.1021/np0497189.
  • Isaka M, Tanticharoen M, Kongsaeree P, et al. Structures of cordypyridones A-D, antimalarial N-hydroxy- and N-methoxy-2-pyridones from the insect pathogenic fungus Cordyceps nipponica. J Org Chem. 2001;66:4803–4808. doi: 10.1021/jo0100906.
  • Sun Y, Zhao Z, Feng Q, et al. Unusual spirodecane sesquiterpenes and a fumagillol analogue from cordyceps ophioglossoides. HCA. 2013;96:76–84. doi: 10.1002/hlca.201200068.
  • Wang J, Zhang D-M, Jia J-F, et al. Cyclodepsipeptides from the ascocarps and insect-body portions of fungus Cordyceps cicadae. Fitoterapia. 2014;97:23–27. doi: 10.1016/j.fitote.2014.05.010.
  • Wei PY, Liu LX, Liu T, et al. Three new pigment protein tyrosine phosphatases inhibitors from the insect parasite fungus Cordyceps gracilioides: terreusinone A, pinophilin C and cryptosporioptide A. Molecules. 2015;20:5825–5834. doi: 10.3390/molecules20045825.
  • Chiu C-P, Liu S-C, Tang C-H, et al. Anti-inflammatory cerebrosides from cultivated Cordyceps militaris. J Agric Food Chem. 2016;64:1540–1548. doi: 10.1021/acs.jafc.5b05931.
  • Fatima N, Ahmad MK, Ansari JA, et al. Anticancer, antioxidant potential and profiling of polyphenolic compounds of Wrightia tinctoria Roxb. (R.Br.) bark. J Adv Pharm Technol Res. 2016;7:159–165. doi: 10.4103/2231-4040.191428.
  • Reis FS, Barros L, Calhelha RC, et al. The methanolic extract of Cordyceps militaris (L.) Link fruiting body shows antioxidant, antibacterial, antifungal and antihuman tumor cell lines properties. Food Chem Toxicol. 2013;62:91–98. doi: 10.1016/j.fct.2013.08.033.
  • Mamta., et al. Phytochemical and antimicrobial activities of Himalayan Cordyceps sinensis (Berk.) Sacc. Indian J Exp Biol 2015;53:36–43.
  • Zhong L, Zhao L, Yang F, et al. Evaluation of anti-fatigue property of the extruded product of cereal grains mixed with Cordyceps militaris on mice. J Int Soc Sports Nutr. 2017;14:1–10. doi: 10.1186/s12970-017-0171-1.
  • Ma MW, Shu Gao X, Yu Hl, et al. Cordyceps sinensis promotes the growth of prostate cancer cells. Nutr Cancer. 2018;70:1166–1172. doi: 10.1080/01635581.2018.1504091.
  • Li J, Cai H, Sun H, et al. Extracts of Cordyceps sinensis inhibit breast cancer growth through promoting M1 macrophage polarization via NF-κB pathway activation. J Ethnopharmacol. 2020;260:112969. doi: 10.1016/j.jep.2020.112969.
  • Choi E, Oh J, Sung GH. Beneficial effect of Cordyceps militaris on exercise performance via promoting cellular energy production. Mycobiology. 2020;48:512–517. doi: 10.1080/12298093.2020.1831135.
  • Wei S, Peng W, Zhang C, et al. Cordyceps sinensis aqueous extract regulates the adaptive immunity of mice subjected to 60Co γ irradiation. Phytother Res. 2021;35:5163–5177. doi: 10.1002/ptr.7186.
  • Hu Z, Lai Y, Ma C, et al. Cordyceps militaris extract induces apoptosis and pyroptosis via caspase-3/PARP/GSDME pathways in A549 cell line. Food Sci Nutr. 2022;10:21–38. doi: 10.1002/fsn3.2636.
  • Eiamthaworn K, Kaewkod T, Bovonsombut S, et al. Efficacy of Cordyceps militaris extracts against some skin pathogenic bacteria and antioxidant activity. JoF. 2022;8:327. doi: 10.3390/jof8040327.
  • Chen B-Y, Huang H-S, Tsai K-J, et al. Protective effect of a water-soluble carotenoid-rich extract of Cordyceps militaris against light-evoked functional vision deterioration in mice. Nutrients. 2022;14:1675. doi: 10.3390/nu14081675.
  • Pintathong P, Chomnunti P, Sangthong S, et al. The feasibility of utilizing cultured cordyceps militaris residues in cosmetics: biological activity assessment of their crude extracts. JoF. 2021;7:973. doi: 10.3390/jof7110973.
  • Fung SY, Lee SS, Tan NH, et al. Safety assessment of cultivated fruiting body of Ophiocordyceps sinensis evaluated through subacute toxicity in rats. J Ethnopharmacol. 2017;206:236–244. doi: 10.1016/j.jep.2017.05.037.
  • Long H, Qiu X, Cao L, et al. Toxicological safety evaluation of the cultivated Chinese cordyceps. J Ethnopharmacol. 2021;268:113600. doi: 10.1016/j.jep.2020.113600.
  • Kang HJ, Baik HW, Kim SJ, et al. Cordyceps militaris enhances cell-mediated immunity in healthy Korean men. J Med Food. 2015;18:1164–1172. doi: 10.1089/jmf.2014.3350.
  • Heo JY, Baik HW, Kim HJ, et al. The efficacy and safety of cordyceps militaris in Korean adults who have mild liver dysfunction. J Clin Nutr. 2015;7:81–86. doi: 10.15747/jcn.2015.7.3.81.
  • David Dudgeon W. The effects of high and low-dose cordyceps militaris-containing mushroom blend supplementation after seven and twenty-eight days. AJSS. 2018;6:1. doi: 10.11648/j.ajss.20180601.11.
  • Tsai Y-S, Hsu J-H, Lin DP-C, et al. Safety assessment of HEA-enriched Cordyceps cicadae mycelium: a randomized clinical trial. J Am Coll Nutr. 2021;40:127–132. doi: 10.1080/07315724.2020.1743211.
  • Tuli HS, Sandhu SS, Dharambir K, et al. Optimization of extraction conditions and antimicrobial potential of a bioactive metabolite, Cordycepin from Cordyceps militaris 3936. World J Pharm Pharmaceut Sci (WJPPS). 2014;3:1525–1535.
  • Ueda Y, Mori K, Satoh S, et al. Anti-HCV activity of the Chinese medicinal fungus Cordyceps militaris. Biochem Biophys Res Commun. 2014;447:341–345. doi: 10.1016/j.bbrc.2014.03.150.
  • Ryu E, Son M, Lee M, et al. Cordycepin is a novel chemical suppressor of Epstein-Barr virus replication. Oncoscience. 2014;1:866–881. doi: 10.18632/oncoscience.110.
  • Youg-Ju Jeong E-MNHjYSHJJ-HH, Jong-Suk Kim E-YCJ-YJB-SKS-HLY-RL. Cordycepin inhibits TPA-induced matrix metalloproteinase-9 expression by suppressing the MAPK/AP-1 pathway in MCF-7 human breast cancer cells. Int J Mol Med. 2010;25:255–260. doi: 10.3892/ijmm.
  • Jeong J-W, Jin C-Y, Park C, et al. Inhibition of migration and invasion of LNCaP human prostate carcinoma cells by cordycepin through inactivation of Akt. Int J Oncol. 2012;40:1697–1704. doi: 10.3892/ijo.2012.1332.
  • Cho HJ, Cho JY, Rhee MH, et al. Cordycepin (3′-deoxyadenosine) inhibits human platelet aggregation induced by U46619, a TXA 2 analogue. J Pharm Pharmacol. 2006;58:1677–1682. doi: 10.1211/jpp.58.12.0016.
  • Nakamura K, Shinozuka K, Yoshikawa N. Anticancer and antimetastatic effects of cordycepin, an active component of Cordyceps sinensis. J Pharmacol Sci. 2015;127:53–56. doi: 10.1016/j.jphs.2014.09.001.
  • Ying X, Peng L, Chen H, et al. Cordycepin prevented IL-β-induced expression of inflammatory mediators in human osteoarthritis chondrocytes. Int Orthop. 2014;38:1519–1526. doi: 10.1007/s00264-013-2219-4.
  • Shin S, Lee S, Kwon J, et al. Cordycepin suppresses expression of diabetes regulating genes by inhibition of lipopolysaccharide-induced inflammation in macrophages. Immune Netw. 2009;9:98–105. doi: 10.4110/in.2009.9.3.98.
  • Ma L, Zhang S, Du M. Cordycepin from Cordyceps militaris prevents hyperglycemia in alloxan-induced diabetic mice. Nutr Res. 2015;35:431–439. doi: 10.1016/j.nutres.2015.04.011.
  • Guo P, Kai Q, Gao J, et al. Cordycepin prevents hyperlipidemia in hamsters fed a high-fat diet via activation of AMP-activated protein kinase. J Pharmacol Sci. 2010;113:395–403. doi: 10.1254/jphs.10041FP.
  • Zhang Z, Li K, Zheng Z, et al. Cordycepin inhibits colon cancer proliferation by suppressing MYC expression. BMC Pharmacol Toxicol. 2022;23:1–8. doi: 10.1186/s40360-022-00551-z.
  • Li H-B, Chen J-K, Su Z-X, et al. Cordycepin augments the chemosensitivity of osteosarcoma to cisplatin by activating AMPK and suppressing the AKT signaling pathway. Cancer Cell Int. 2021;21:1–12. doi: 10.1186/s12935-021-02411-y.
  • Guo Z, Chen W, Dai G, et al. Cordycepin suppresses the migration and invasion of human liver cancer cells by downregulating the expression of CXCR4. Int J Mol Med. 2020;45:141–150. doi: 10.3892/ijmm.2019.4391.
  • Lu MY, Chen CC, Lee LY, et al. N6-(2-hydroxyethyl)adenosine in the medicinal mushroom Cordyceps cicadae Attenuates lipopolysaccharide-stimulated pro-inflammatory responses by suppressing TLR4-mediated NF-κB signaling pathways. J Nat Prod. 2015;78:2452–2460. doi: 10.1021/acs.jnatprod.5b00573.
  • Zhang L, Wu T, Olatunji OJ, et al. N6-(2-hydroxyethyl)-adenosine from Cordyceps cicadae attenuates hydrogen peroxide induced oxidative toxicity in PC12 cells. Metab Brain Dis. 2019;34:1325–1334. doi: 10.1007/s11011-019-00440-1.
  • Zheng R, Zhu R, Li X, et al. N6-(2-Hydroxyethyl) adenosine from cordyceps cicadae ameliorates renal interstitial fibrosis and prevents inflammation via TGF-β1/Smad and NF-κB signaling pathway. Front. Physiol. 2018;9:1–14. doi: 10.3389/fphys.2018.01229.
  • Wang X, Qin A, Xiao F, et al. N6-(2-hydroxyethyl)-adenosine from Cordyceps cicadae protects against diabetic kidney disease via alleviation of oxidative stress and inflammation. J Food Biochem. 2019;43:e12727. doi: 10.1111/jfbc.12727.
  • Zhang W, Yang J, Chen J, et al. Immunomodulatory and antitumour effects of an exopolysaccharide fraction from cultivated Cordyceps sinensis (Chinese caterpillar fungus) on tumour-bearing mice. Biotechnol Appl Biochem. 2005;42:9–15. doi: 10.1042/ba20040183.
  • Kuo MC, Chang CY, Cheng TL, et al. Immunomodulatory effect of exo-polysaccharides from submerged cultured Cordyceps sinensis: enhancement of cytokine synthesis, CD11b expression, and phagocytosis. Appl Microbiol Biotechnol. 2007;75:769–775. doi: 10.1007/s00253-007-0880-5.
  • Zhang W, Li J, Qiu S, et al. Effects of the exopolysaccharide fraction (EPSF) from a cultivated Cordyceps sinensis on immunocytes of H22 tumor bearing mice. Fitoterapia. 2008;79:168–173. doi: 10.1016/j.fitote.2007.09.001.
  • Shen W, Song D, Wu J, et al. Protective effect of a polysaccharide isolated from a cultivated Cordyceps mycelia on hydrogen peroxide-induced oxidative damage in PC12 cells. Phytother Res. 2011;25:675–680. doi: 10.1002/ptr.3320.
  • Chen W, Yuan F, Wang K, et al. Modulatory effects of the acid polysaccharide fraction from one of anamorph of Cordyceps sinensis on Ana-1 cells. J Ethnopharmacol. 2012;142:739–745. doi: 10.1016/j.jep.2012.05.055.
  • Zhang G, Yin Q, Han T, et al. Purification and antioxidant effect of novel fungal polysaccharides from the stroma of Cordyceps kyushuensis. Ind Crops Prod. 2015;69:485–491. doi: 10.1016/j.indcrop.2015.03.006.
  • Zhu Z-Y, Chen J, Si C-L, et al. Immunomodulatory effect of polysaccharides from submerged cultured Cordyceps gunnii. Pharm Biol. 2012;50:1103–1110. doi: 10.3109/13880209.2012.658114.
  • Yu R, Song L, Zhao Y, et al. Isolation and biological properties of polysaccharide CPS-1 from cultured Cordyceps militaris. Fitoterapia. 2004;75:465–472. doi: 10.1016/j.fitote.2004.04.003.
  • Wang Y, Yin H, Lv X, et al. Protection of chronic renal failure by a polysaccharide from Cordyceps sinensis. Fitoterapia. 2010;81:397–402. doi: 10.1016/j.fitote.2009.11.008.
  • Wang Y, Liu D, Zhao H, et al. Cordyceps sinensis polysaccharide CPS-2 protects human mesangial cells from PDGF-BB-induced proliferation through the PDGF/ERK and TGF-β1/Smad pathways. Mol Cell Endocrinol. 2014;382:979–988. doi: 10.1016/j.mce.2013.11.018.
  • Yan JK, Wang WQ, Li L, et al. Physiochemical properties and antitumor activities of two α-glucans isolated from hot water and alkaline extracts of Cordyceps (Cs-HK1) fungal mycelia. Carbohydr Polym. 2011;85:753–758. doi: 10.1016/j.carbpol.2011.03.043.
  • Cheung JKH, Li J, Cheung AWH, et al. Cordysinocan, a polysaccharide isolated from cultured Cordyceps, activates immune responses in cultured T-lymphocytes and macrophages: signaling cascade and induction of cytokines. J Ethnopharmacol. 2009;124:61–68. doi: 10.1016/j.jep.2009.04.010.
  • Kim SD. Isolation, structure and cholesterol esterase inhibitory activity of a Polysaccharide, PS-A, from Cordyceps sinensis. JKSABC. 2010;53:784–789. doi: 10.3839/jksabc.2010.118.
  • Sun HQ, Yu XF, Li T, et al. Structure and hypoglycemic activity of a novel exopolysaccharide of Cordyceps militaris. Int J Biol Macromol. 2021;166:496–508. doi: 10.1016/j.ijbiomac.2020.10.207.
  • Shang X-L, Pan L-C, Tang Y, et al. 1H NMR-based metabonomics of the hypoglycemic effect of polysaccharides from Cordyceps militaris on streptozotocin-induced diabetes in mice. Nat Prod Res. 2020;34:1366–1372. doi: 10.1080/14786419.2018.1516216.
  • Yang J, Dong H, Wang Y, et al. Cordyceps cicadae polysaccharides ameliorated renal interstitial fibrosis in diabetic nephropathy rats by repressing inflammation and modulating gut microbiota dysbiosis. Int J Biol Macromol. 2020;163:442–456. doi: 10.1016/j.ijbiomac.2020.06.153.
  • Zheng Y, Li L, Cai T. Cordyceps polysaccharide ameliorates airway inflammation in an ovalbumin-induced mouse model of asthma via TGF-β1/Smad signaling pathway. Respiratory Physiology and Neurobiology. 2020;276:103412. doi: 10.1016/j.resp.2020.103412.
  • Zhang Y, Zeng Y, Cui Y, et al. Structural characterization, antioxidant and immunomodulatory activities of a neutral polysaccharide from Cordyceps militaris cultivated on hull-less barley. Carbohydr Polym. 2020;235:115969. doi: 10.1016/j.carbpol.2020.115969.
  • Qi W, Zhou X, Wang J, et al. Cordyceps sinensis polysaccharide inhibits colon cancer cells growth by inducing apoptosis and autophagy flux blockage via mTOR signaling. Carbohydr Polym. 2020;237:116113. doi: 10.1016/j.carbpol.2020.116113.
  • Yu M, Yue J, Hui N, et al. Anti-hyperlipidemia and gut microbiota community regulation effects of selenium-rich cordyceps militaris polysaccharides on the high-fat diet-fed mice model. Foods. 2021;10:2252. doi: 10.3390/foods10102252.
  • Nallathamby N, Guan-Serm L, Vidyadaran S, et al. Ergosterol of Cordyceps militaris attenuates LPS induced inflammation in BV2 microglia cells. Nat Prod Commun. 2015;10:1934578X1501000. doi: 10.1177/1934578X1501000623.
  • Zhu R, Zheng R, Deng Y, et al. Ergosterol peroxide from Cordyceps cicadae ameliorates TGF-β1-induced activation of kidney fibroblasts. Phytomedicine. 2014;21:372–378. doi: 10.1016/j.phymed.2013.08.022.
  • Xiao JH, Sun ZH, Pan WD, et al. Jiangxienone, a new compound with potent cytotoxicity against tumor cells from traditional chinese medicinal mushroom cordyceps jiangxiensis. Chem Biodivers. 2012;9:1349–1355. doi: 10.1002/cbdv.201100244.
  • Yang LY, Huang WJ, Hsieh HG, et al. H1-A extracted from Cordyceps sinensis suppresses the proliferation of human mesangial cells and promotes apoptosis, probably by inhibiting the tyrosine phosphorylation of Bcl-2 and Bcl-XL. J Lab Clin Med. 2003;141:74–83. doi: 10.1067/mlc.2003.6.
  • Qian GM, Pan GF, Guo JY. Anti-inflammatory and antinociceptive effects of cordymin, a peptide purified from the medicinal mushroom Cordyceps sinensis. Nat Prod Res. 2012;26:2358–2362. doi: 10.1080/14786419.2012.658800.
  • Wang J, Liu YM, Cao W, et al. Anti-inflammation and antioxidant effect of cordymin, a peptide purified from the medicinal mushroom Cordyceps sinensis, in middle cerebral artery occlusion-induced focal cerebral ischemia in rats. Metab Brain Dis. 2012;27:159–165. doi: 10.1007/s11011-012-9282-1.
  • Qi W, Zhang Y, Yan Y-b, et al. The protective effect of cordymin, a peptide purified from the medicinal mushroom Cordyceps sinensis, on diabetic osteopenia in alloxan-induced diabetic rats. Evidence-Based Complement Alternat Med. 2013;2013:1–6. doi: 10.1155/2013/985636.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.