9
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Characterization of γ-Radiation Induced Decomposition Products of Thymidine-Containing Dinucleoside Monophosphates by Nuclear Magnetic Resonance Spectroscopy

, , &
Pages 747-762 | Received 14 Sep 1992, Published online: 21 May 2012

References and Footnotes

  • Weinfeld , M. and Livingston , D. C. 1986 . Biochemistry , 25 : 5083 – 5091 .
  • Liuzzi , M. , Weinfeld , M. and Paterson , M. C. 1989 . J. Biol. Chem. , 264 : 6355 – 6363 .
  • Weinfeld , M. , Liuzzi , M. and Paterson , M. C. 1989 . J. Biol. Chem. , 264 : 6364 – 6370 .
  • Weinfeld , M. , Liuzzi , M. and Paterson , M. C. 1989 . Nucleic Acids Res. , 17 : 3735 – 3745 .
  • Hegi , M. E. , Sagelsdorff , P. and Lutz , W. K. 1989 . Carcinogenesis , 10 : 43 – 47 .
  • Ide , H. and Wallace , S. S. 1988 . Nucleic Acids Res. , 16 : 11339 – 11354 .
  • Gajewski , E. , Rao , G. , Nackerdien , Z. and Dizdaroglu , M. 1990 . Biochemistry , 29 : 7876 – 7882 .
  • Furlong , E. A. , Jorgensen , T. J. and Henner , W. O. 1986 . Biochemistry , 25 : 4344 – 4349 .
  • Wallace , S. S. 1988 . Environ. Mol. Mutagen. , 12 : 431 – 477 .
  • Cadet , J. , Ducolomb , R. and Hruska , F. E. 1979 . Biochim. Biophys. Acta , 563 : 206 – 215 .
  • Cadet , J. , Voituriez , L. , Hruska , F. E. , Kan , L.-S. , DeLeeuw , F. A.A.M. and Altona , C. 1985 . Can. J. Chem. , 63 : 2861 – 2868 .
  • Hruska , F. E. , Sebastian , R. , Grand , A. , Voituriez , L. and Cadet , J. 1987 . Can. J. Chem. , 65 : 2618 – 2623 .
  • Vaishnav , Y. , Holwitt , E. , Swenberg , C. , Lee , H.-C. and Kan , L.-S. 1991 . J. Biomol. Struct. and Dynam. , 8 : 935 – 951 .
  • Iida , S. and Hayatsu , H. 1971 . Biochim. Biophys. Acta. , 240 : 370 – 375 .
  • Burton , K. and Riley , W. T. 1966 . Biochem. J. , 98 : 70 – 77 .
  • Cohn , W. E. and Doherty , D. G. 1956 . J. Am. Chem. Soc. , 78 : 2863 – 2866 .
  • States , D. J. , Haberkorn , R. A. and Ruben , D. J. 1982 . J. Magn. Reson. , 48 : 286 – 292 .
  • Otting , G. , Widmer , H. , Wagner , G. and Wüthrich , K. 1986 . J. Magn. Reson. , 66 : 187 – 193 .
  • Noggle , J. H. and Schirmer , R. E. 1971 . The Nuclear Overhauser Effect New York : Academic Press .
  • Neuhaus , D. and Williamson , M. 1989 . The Nuclear Overhauser Effect in Structural and Conformation Analysis Weinheim , Cambridge : VCH .
  • Wüthrich , K. 1986 . “NMR of Proteins and Nucleic Acids” New York : Wiley .
  • van Gunsteren , W. F. and Berendsen , H. J.C. 1987 . GROnigen MOlecular Simulation (GROMOS) library manual Groningen , , The Netherlands : BIOMOS, Biomolecular Software, Laboratory of Physical Chemistry, University of Groningen .
  • Preliminary molecular dynamics calculations were performed essentially as described previously (38). Simulations were carried out to 20 ps in total and used distance restraint force constants of 1 to 100 kJ mol−1 nm−2. For each compound, fifty to sixty interproton distance restraints were interpreted from the NOESY data. The resultant molecular dynamics structures were then subjected to an additional 200 steps of energy minimization. There is insufficient NMR data in the present study to present sets of coordinates representing full structural and dynamic models of these compounds because (i) there is no NMR data that provide information on the position of one nucleotidyl unit relative to another and (ii) these compounds are inherently mobile and some serious violations of the structures exist with respect to the interproton distances. For example, the Adenine H8⇔H1′ and H8⇔H2′ distances are not simultaneously satisfied by any one structure, probably because of a syn⇌anti conformational equilibrium (see Table IV). The approximate force field of the molecular mechanics calculations forced some base-stacking within the dinucleoside monophosphates that show all the molecules (except d-TgpA) adopting a right-handed mini-helix typical of B-DNA (34,39). Although TgpA did show a left-handed base-stacking conformation, this may be more a result of the force field used in the molecular dynamics simulation rather than the use of a distance restraint pseudo-potential derived from the NMR data that was sufficiently large to correct any approximations (38). It should be noted that the related substitution by a methyl group at the 6 position induces a syn conformation for 6-methyl thymine (45) which could destabilize the right-handed conformation when incorporated into a polynucleotide. The structure of thymidine glycol nucleoside have been solved crystallographically (12). The torsion angles of the base agreed remarkably well with our data (within 1°), with the exception of the C2-N3-C4-C5 angle (a 10° difference). These differences may be due to an effect resulting from the approximate nature of the force field used in the molecular dynamics calculations, to crystal packing forces that produce a pucker not assumed in solution, or to the motion of the ring in solution. The NOE data used in the molecular dynamic calculations represent distances averaged over the many fluctuating conformations of the molecules in solution, and therefore, any computed static structures likely exhibit distortions from a true instantaneous conformation. The time-averaged restraint methodology developed recently by Torda et al. (51,52) could compensate for the averaging effect on the distances, but, such methods rely heavily on sampling of molecular dynamics trajectories and are therefore, in turn, biased by the force field used in the calculation. Nonetheless, our initial molecular dynamic results show that all the nucleotides are primarily anti about χ and all their sugars adopt a predominantly 2′-endo conformation
  • lida , S. and Hayatsu , H. 1970 . Biochim. Biophys. Acta , 213 : 1 – 13 .
  • Kochetkov , N. K. and Budovskii , E. I. 1972 . Organic Chemistry of Nucleic Acids 287 – 299 . London : Plenum Press . Part B
  • Ide , H. , Melamede , R. J. and Wallace , S. S. 1987 . Biochemistry , 26 : 964 – 969 .
  • Kondo , Y. and Witkop , B. 1968 . J. Amer. Chem. Soc. , 90 : 764 – 770 .
  • Remin , M. and Shugar , D. 1972 . Biochem Biophys. Res. Commun. , 48 : 636 – 642 .
  • Wood , D. J. , Hruska , F. E. and Ogilvie , K. K. 1974 . Can. J. Chem. , 52 : 3353 – 3366 .
  • Davies , D. B. and Danyluk , S. S. 1974 . Biochemistry , 13 : 4417 – 4434 .
  • Carey , F. A. and Sundberg , R. J. 1977 . Advanced Organic Chemistry, Part A, Structure and Mechanisms 83 – 94 . New York : Plenum Press .
  • Clore , G. M. and Gronenbom , A. M. 1985 . FEBS Lett. , 179 : 187 – 198 .
  • Cohen , J. S. 1987 . Trends Biochem. Sci. , 12 : 13 – 135 .
  • Cheng , D. and Sarma , R. H. 1977 . J. Am. Chem. Soc. , 99 : 7333 – 7348 .
  • Belfi , C. A. , Arakali , A. V. , Paul , C. R. and Box , H. C. 1986 . Radiation Research , 106 : 17
  • Belfi , C. A. and Box , H. C. 1985 . Int. J. Radiat. Biol. , 47 : 393 – 396 .
  • Buchko , G. W. , Hruska , F. E. and Sadana , K. L. 1990 . Can. J. Chem. , 68 : 2011 – 2021 .
  • Baleja , J. D. , Germann , M. W. , van de Sande , J. H. and Sykes , B. D. 1990 . J. Mol. Biol. , 215 : 411 – 428 .
  • Rinkel , L. and Altona , C. J. 1987 . Biomol. Struct. and Dynam. , 4 : 621 – 649 .
  • Kan , L.-S. , Voituirez , L. and Cadet , J. 1988 . Biochemistry , 27 : 5796 – 5803 .
  • Esposito , G. , Cauci , S. , Fogolari , F. , Alessio , E. , Scocchi , M. , Quadrifoglio , F. and Viglino , P. 1992 . Biochemistry , 31 : 7094 – 7103 .
  • Orban , J. and Bell , R. A. 1990 . J. Biol. Struct. Dynam. , 7 : 837 – 848 .
  • As indicated in Table III, we have measured all possible coupling constants within the sugar ring except for J.3′4′, Initially we had rigorously applied the methodology of Rinkel and Altona (39). Only small changes in the selection of pseudo rotational angle for the true “N” and “S” conformers (by less than 18°) and in the extent of sugar puckering (by less than 5°) could bring calculated and experimentally observed coupling constants into complete agreement Application of the simpler Σ1′ equation results in no changes in our conclusions
  • Davies , B. D. 1978 . Prog. in NMR Spectroscopy , 12 : 135 – 225 .
  • George , A. L. , Hruska , F. E. , Ogilvie , K. K. and Holy , A. 1978 . Can. J. Chem. , 56 : 1170 – 1176 .
  • Haasnoot , C. A.G. , de Leeuw , F. A.A.M. , De Leeuw , H. P.M. and Altona , C. 1979 . Recl. Trav. Chem. Pays-Bas , 96 : 576 – 577 .
  • Weinfeld , M. , Soderlind , K.-J. M. and Buchko , G. W. Nucleic Acids Res , (in press)
  • Ogilvie , K. K. and Hruska , H. E. 1976 . Biochem. Biophys. Res. Comm. , 68 : 375 – 378 .
  • Volbeda , A. , Lahm , A. , Sakiyama , F. and Suck , D. 1991 . EMBO , 10 : 1607 – 1618 .
  • Kay , L. E. , Scarsdale , J. N. , Hare , D. R. and Prestegard , J. H. 1986 . J. Magn. Reson. , 68 : 525
  • Pearlman , D. A. and Kollman , P. A. 1991 . J. Mol. Biol. , 220 : 457 – 479 .
  • Torda , A. E. , Scheek , R. M. and van Gunsteren , W. F. 1990 . J. Mol. Biol. , 214 : 223 – 235 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.