157
Views
4
CrossRef citations to date
0
Altmetric
Articles

Residue level description of In vivo self-association of Plasmodium falciparum P2

, &
Pages 602-612 | Received 19 Feb 2013, Accepted 03 Mar 2013, Published online: 13 Apr 2013

References

  • Baker, N. A., Sept, D., Joseph, S., Holst, M. J., & McCammon, J. A. (2001). Electrostatics of nanosystems: Application to microtubules and the ribosome. Proceedings of the National Academy of Sciences of the United States of America, 98, 10037–10041.
  • Bhavesh, N. S., Panchal, S. C., & Hosur, R. (2001a). An efficient high-throughput resonance assignment procedure for structural genomics and protein folding research by NMR. Biochemistry, 40, 14727–14735.
  • Chatterjee, A., Bhavesh, N. S., Panchal, S. C., & Hosur, R. V. (2002). A novel protocol based on HN(C)N for rapid resonance assignment in (N-15, C-13) labeled proteins: Implications to structural genomics. Biochemical and Biophysical Research Communications, 293, 427–432.
  • Das, S., Basu, H., Korde, R., Tewari, R., & Sharma, S. (2012). Arrest of nuclear division in Plasmodium through blockage of erythrocyte surface exposed ribosomal protein P2. PLoS Pathogens, 8, 1–19.
  • Das, S., Rajagopal, S., Sivakami, S. & Sharma, S. (2012). Erythrocytic stage dependent regulation of oligomerization of Plasmodium ribosomal protein P2. Journal of Biological Chemistry, 287, 41499–41513.
  • Diaconu, M., Kothe, U., Schlunzen, F., Fischer, N., Harms, J. M., Tonevitsky, A. G., …, & Wahl, M. C. (2005). Structural basis for the function of the ribosomal L7/12 stalk in factor binding and GTPase activation. Cell, 121, 991–1004.
  • Dolinsky, T. J., Czodrowski, P., Li, H., Nielsen, J. E., Jensen, J. H., Klebe, G., & Baker, N. A. (2007). PDB2PQR: Expanding and upgrading automated preparation of biomolecular structures for molecular simulations. Nucleic Acids Research, 35, W522–W525.
  • Dyson, H. J., & Wright, P. E. (1996). Insights into protein folding from NMR. Annual Review of Physical Chemistry, 47, 369–395.
  • Fernandez-Escamilla, A. M., Rousseau, F., Schymkowitz, J., & Serrano, L. (2004). Prediction of sequence-dependent and mutational effects on the aggregation of peptides and proteins. Nature biotechnology, 22, 1302–1306.
  • Gonzalo, P., Lavergne, J. P., & Reboud, J. P. (2001). Pivotal role of the P1N-terminal domain in the assembly of the mammalian ribosomal stalk and in the proteosynthetic activity. Journal of Biological Chemistry, 276, 19762–19769.
  • Gonzalo, P., & Reboud, J. P. (2003). The puzzling lateral flexible stalk of the ribosome. Biology of the Cell, 95, 179–193.
  • Gudkov, A. T., Bubunenko, M. G., & Gryaznova, O. I. (1991). Overexpression of L7/L12 protein with mutations in its flexible region. Biochimie, 73, 1387–1389.
  • Hasler, P., Brot, N., Weissbach, H., Parnassa, A., & Elkon, K. B. (1991). Ribosomal proteins P0, P1, and P2 are phosphorylated by casein kinase II at their conserved carboxyl termini. Journal of Biological Chemistry, 266, 13815–13820.
  • Jane Dyson, H. & Wright, P. E. (2001). [12] Nuclear magnetic resonance methods for elucidation of structure and dynamics in disordered states. In V. D. Thomas, L. James and S. Uli (Eds.), Methods in enzymology. Vol. 339 (pp. 258–270). La Jolla, CA: Academic Press.
  • Kirsebom, L. A., Amons, R., & Isaksson, L. A. (1986). Primary structures of mutationally altered ribosomal-protein L7/L12 and their effects on cellular growth and translational accuracy. European Journal of Biochemistry, 156, 669–675.
  • Lee, K. M., Yu, C. W. H., Chan, D. S. B., Chiu, T. Y. H., Zhu, G. A., Sze, K. H., …, & Wong, K. B. (2010). Solution structure of the dimerization domain of ribosomal protein P2 provides insights for the structural organization of eukaryotic stalk. Nucleic Acids Research, 38, 5206–5216.
  • Linding, R., Schymkowitz, J., Rousseau, F., Diella, F., & Serrano, L. (2004). A comparative study of the relationship between protein structure and β-aggregation in globular and intrinsically disordered proteins. Journal of Molecular Biology, 342, 345–353.
  • Macconnell, W. P., & Kaplan, N. O. (1982). The activity of the acidic phosphoproteins from the 80 S rat-liver ribosome. Journal of Biological Chemistry, 257, 5359–5366.
  • Mishra, P., Das, S., Panicker, L., Hosur, M. V., Sharma, S., & Hosur, R. V. (2012). NMR insights into folding and self-association of Plasmodium falciparum P2. PLoS ONE, 7, e36279.
  • Naranda, T., & Ballesta, J. P. G. (1991). Phosphorylation controls binding of acidic proteins to the ribosome. Proceedings of the National Academy of Sciences of the United States of America, 88, 10563–10567.
  • Panchal, S., Bhavesh, N., & Hosur, R. (2001). Improved 3D triple resonance experiments, HNN and HN(C)N, for HN and 15N sequential correlations in (13C, 15N) labeled proteins: Application to unfolded proteins. Journal of Biomolecular NMR, 20, 135–147.
  • Permi, P., & Annila, A. (2004). Coherence transfer in proteins. Progress in Nuclear Magnetic Resonance Spectroscopy, 44, 97–137.
  • Qiu, D., Parada, P., Marcos, A. G., Cárdenas, D., Remacha, M., & Ballesta, J. P. G. (2006). Different roles of P1 and P2 Saccharomyces cerevisiae ribosomal stalk proteins revealed by cross-linking. Molecular Microbiology, 62, 1191–1202.
  • Remacha, M., JimenezDiaz, A., Santos, C., Briones, E., Zambrano, R., Gabriel, M. A. R., …, & Ballesta, J. P. G. (1995). Proteins P1, P2, and P0, components of the eukaryotic ribosome stalk. New structural and functional aspects. Biochemistry and Cell Biology-Biochimie Et Biologie Cellulaire, 73, 959–968.
  • Remacha, M., Saenzrobles, M. T., Vilella, M. D., & Ballesta, J. P. G. (1988). Independent genes-coding for 3 acidic proteins of the large ribosomal-subunit from Saccharomyces cerevisiae. Journal of Biological Chemistry, 263, 9094–9101.
  • Rousseau, F., Schymkowitz, J., & Serrano, L. (2006). Protein aggregation and amyloidosis: Confusion of the kinds? Current Opinion in Structural Biology, 16, 118–126.
  • Santos, C., & Ballesta, J. P. G. (1995). The highly conserved protein p0 carboxyl end is essential for ribosome activity only in the absence of proteins p1 and p2. Journal of Biological Chemistry, 270, 20608–20614.
  • Schwarzinger, S., Kroon, G. A., Foss, T., Wright, P., & Dyson, H. J. (2000). Random coil chemical shifts in acidic 8 M urea: Implementation of random coil shift data in NMR view. Journal of Biomolecular NMR, 18, 43–48.
  • Shimizu, T., Nakagaki, M., Nishi, Y., Kobayashi, Y., Hachimori, A., & Uchiumi, T. (2002). Interaction among silkworm ribosomal proteins P1, P2 and P0 required for functional protein binding to the GTPase-associated domain of 28S rRNA. Nucleic Acids Research, 30, 2620–2627.
  • Tchorzewski, M. (2002). The acidic ribosomal P proteins. International Journal of Biochemistry & Cell Biology, 34, 911–915.
  • Tsurugi, K., & Ogata, K. (1985). Evidence for the exchangeability of acidic ribosomal-proteins on cytoplasmic ribosomes in regenerating rat-liver. Journal of Biochemistry, 98, 1427–1431.
  • Tugarinov, V., Hwang, P. M., & Kay, L. E. (2004). Nuclear magnetic resonance spectroscopy of high-molecular-weight proteins. Annual Review of Biochemistry, 73, 107–146.
  • Uchiumi, T., Wahba, A. J., & Traut, R. R. (1987). Topography and stoichiometry of acidic proteins in large ribosomal subunits from Artemia salina as determined by crosslinking. Proceedings of the National Academy of Sciences, 84, 5580–5584.
  • Wishart, D. S., Bigam, C. G., Holm, A., Hodges, R. S., & Sykes, B. D. (1995). H-1, C-13 and N-15 random coil NMR chemical-shifts of the common amino-acidS.1. Investigations of nearest-neighbor effects. Journal of Biomolecular NMR, 5, 67–81.
  • Wishart, D. S., & Sykes, B. D. (1994a). [12] Chemical shifts as a tool for structure determination. Methods in Enzymology, 239, 363–392.
  • Wishart, D. S., & Sykes, B. D. (1994b). The 13 C chemical-shift index: A simple method for the identification of protein secondary structure using 13 C chemical-shift data. Journal of Biomolecular NMR, 4, 171–180.
  • Wishart, D., Sykes, B., & Richards, F. (1991). Relationship between nuclear magnetic resonance chemical shift and protein secondary structure. Journal of Molecular Biology, 222, 311–333.
  • Wool, I. G., Chan, Y. L., Gluck, A., & Suzuki, K. (1991). The primary structure of rat ribosomal protein-p0, protein-p1, and protein-p2 and a proposal for a uniform nomenclature for mammalian and yeast ribosomal-proteins. Biochimie, 73, 861–870.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.