207
Views
11
CrossRef citations to date
0
Altmetric
Articles

Modelling and analysis of early aggregation events of BMHP1-derived self-assembling peptides

&
Pages 759-775 | Received 17 Jan 2013, Accepted 25 Mar 2013, Published online: 03 Jun 2013

References

  • Auer, S., Dobson, C. M., & Vendruscolo, M. (2007). Characterization of the nucleation barriers for protein aggregation and amyloid formation. Hfsp Journal, 1, 137–146.
  • Bagautdinov, B., Kuroishi, C., Sugahara, M., & Kunishima, N. (2005). Crystal structures of biotin protein ligase from Pyrococcus horikoshii OT3 and its complexes: Structural basis of biotin activation. Journal of Molecular Biology, 353, 322–333.
  • Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., & Hermans, J. (1989). Interaction models for water in relation to protein hydration. In B. E. Pullman (Ed.), Intermolecular forces (pp. 331–342). Dordrecht: D. Reidel Publishing Company.
  • Berendsen, H. J. C., Postma, J. P. M., Vangunsteren, W. F., Dinola, A., & Haak, J. R. (1984). Molecular-dynamics with coupling to an external bath. Journal of Chemical Physics, 81, 3684–3690.
  • Bowerman, C. J., Ryan, D. M., Nissan, D. A., & Nilsson, B. L. (2009). The effect of increasing hydrophobicity on the self-assembly of amphipathic beta-sheet peptides. Molecular Biosystems, 5, 1058–1069.
  • Burley, S. K., & Petsko, G. A. (1985). Aromatic-aromatic interaction – A mechanism of protein-structure stabilization. Science, 229, 23–28.
  • Bussi, G., Donadio, D., & Parrinello, M. (2007). Canonical sampling through velocity rescaling. Journal of Chemical Physics, 126, 014101.
  • Chapman-Smith, A., & Cronan, J. E. (1999). The enzymatic biotinylation of proteins: a post-translational modification of exceptional specificity. Trends in Biochemical Sciences, 24, 359–363.
  • Chilkoti, A., Tan, P. H., & Stayton, P. S. (1995). Site-directed mutagenesis studies of the high-affinity streptavidin-biotin complex – Contributions of tryptophan residue-79, residue-108, and residue-120. Proceedings of the National Academy of Sciences of the United States of America, 92, 1754–1758.
  • Colombo, G., Daidone, I., Gazit, E., Amadei, A., & Di Nola, A. (2005). Molecular dynamics simulation of the aggregation of the core-recognition motif of the islet amylolid polypeptide in explicit water. Proteins-Structure Function and Bioinformatics, 59, 519–527.
  • Cross, S., Kuttel, M. M., Stone, J. E., & Gain, J. E. (2009). Visualisation of cyclic and multi-branched molecules with VMD. Journal of Molecular Graphics & Modelling, 28, 131–139.
  • Darden, T., York, D., & Pedersen, L. (1993). Particle Mesh Ewald – An N.Log(N) Method for Ewald Sums in Large Systems. Journal of Chemical Physics, 98, 10089–10092.
  • Daura, X., Gademann, K., Jaun, B., Seebach, D., van Gunsteren, W. F., & Mark, A. E. (1999). Peptide folding: When simulation meets experiment. Angewandte Chemie-International Edition, 38, 236–240.
  • Dixit, S. B., & Chipot, C. (2001). Can absolute free energies of association be estimated from molecular mechanical simulations? The biotin-streptavidin system revisited. Journal of Physical Chemistry, A105, 9795–9799.
  • Dolker, N., Zachariae, U., & Grubmuller, H. (2010). Hydrophilic linkers and polar contacts affect aggregation of FG repeat peptides. Biophysical Journal, 98, 2653–2661.
  • Ellis-Behnke, R. G., Liang, Y. X., You, S. W., Tay, D. K. C., Zhang, S. G., So, K. F., & Schneider, G. E. (2006). Nano neuro knitting: Peptide nanofiber scaffold for brain repair and axon regeneration with functional return of vision. Proceedings of the National Academy of Sciences of the United States of America, 103, 5054–5059.
  • Freitag, S., Le Trong, I., Chilkoti, A., Klumb, L. A., Stayton, P. S., & Stenkamp, R. E. (1998). Structural studies of binding site tryptophan mutants in the high-affinity streptavidin–biotin complex. Journal of Molecular Biology, 279, 211–221.
  • Freitag, S., LeTrong, I., Klumb, L., Stayton, P. S., & Stenkamp, R. E. (1997). Structural studies of the streptavidin binding loop. Protein Science, 6, 1157–1166.
  • Gazit, E. (2002). A possible role for pi-stacking in the self-assembly of amyloid fibrils. Faseb Journal, 16, 77–83.
  • Gelain, F., Horii, A., & Zhang, S. G. (2007). Designer self-assembling peptide scaffolds for 3-D tissue cell cultures and regenerative medicine. Macromolecular Bioscience, 7, 544–551.
  • Gelain, F., Panseri, S., Antonini, S., Cunha, C., Donega, M., Lowery, J., … Vescovi, A. (2011a). Transplantation of nanostructured composite scaffolds results in the regeneration of chronically injured spinal cords. ACS Nano, 5, 227–236.
  • Gelain, F., Silva, D., Caprini, A., Taraballi, F., Natalello, A., Villa, O., … Vescovi, A. (2011b). BMHP1-derived self-assembling peptides: Hierarchically assembled structures with self-healing propensity and potential for tissue engineering applications. ACS Nano, 5, 1845–1859.
  • Gravel, R. A., & Narang, M. A. (2005). Molecular genetics of biotin metabolism: Old vitamin, new science. Journal of Nutritional Biochemistry, 16, 428–431.
  • Green, N. M. (1975). Avidin. Advances in Protein Chemistry, 29, 85–133.
  • Gsponer, J., & Vendruscolo, M. (2006). Theoretical approaches to protein aggregation. Protein and Peptide Letters, 13, 287–293.
  • Halley, J. D., & Winkler, D. A. (2008). Consistent concepts of self-organization and self-assembly. Complexity, 14, 10–17.
  • Hess, B., Bekker, H., Berendsen, H. J. C., & Fraaije, J. G. E. M. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18, 1463–1472.
  • Hills, R. D., & Brooks, C. L. (2007). Hydrophobic cooperativity as a mechanism for amyloid nucleation. Journal of Molecular Biology, 368, 894–901.
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics & Modelling, 14, 33–38.
  • Hunter, C. A., & Sanders, J. K. M. (1990). The nature of Pi–Pi interactions. Journal of the American Chemical Society, 112, 5525–5534.
  • Kabsch, W., & Sander, C. (1983). Dictionary of protein secondary structure – pattern-recognition of hydrogen-bonded and geometrical features. Biopolymers, 22, 2577–2637.
  • Le Trong, I., Freitag, S., Klumb, L. A., Chu, V., Stayton, P. S., & Stenkamp, R. E. (2003). Structural studies of hydrogen bonds in the high-affinity streptavidin–biotin complex: Mutations of amino acids interacting with the ureido oxygen of biotin. Acta Crystallographica Section D-Biological Crystallography, 59, 1567–1573.
  • Lehn, J. M. (1995). Supramolecular chemistry: Concepts and perspectives: A personal account built upon the George Fisher Baker lectures in chemistry at Cornell University [and] Lezioni Lincee, Accademia nazionale dei Lincei, Roma. Weinheim, NY: VCH.
  • Li, Q. B., Gusarov, S., Evoy, S., & Kovalenko, A. (2009). Electronic structure, binding energy, and solvation structure of the streptavidin–biotin supramolecular complex: ONIOM and 3D-RISM study. Journal of Physical Chemistry, B113, 9958–9967.
  • Liu, L., Busuttil, K., Zhang, S., Yang, Y. L., Wang, C., Besenbacher, F., & Dong, M. D. (2011). The role of self-assembling polypeptides in building nanomaterials. Physical Chemistry Chemical Physics, 13, 17435–17444.
  • Lu, Y., Derreumaux, P., Guo, Z., Mousseau, N., & Wei, G. (2009). Thermodynamics and dynamics of amyloid peptide oligomerization are sequence dependent. Proteins-Structure Function and Genetics, 75, 954–963.
  • Frisch, M., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., … Pople, J. A. (2004). Gaussian03, revision C.02. Wallingford, CT: Gaussian.
  • Ma, B. Y., & Nussinov, R. (2002). Molecular dynamics simulations of alanine rich beta-sheet oligomers: Insight into amyloid formation. Protein Science, 11, 2335–2350.
  • Massi, F., & Straub, J. E. (2001). Energy landscape theory for Alzheimer’s amyloid beta-peptide fibril elongation. Proteins-Structure Function and Genetics, 42, 217–229.
  • Matson, J. B., & Stupp, S. I. (2012). Self-assembling peptide scaffolds for regenerative medicine. Chem Commun (Camb), 48, 26–33.
  • Matthes, D., Gapsys, V., Daebel, V., & de Groot, B. L. (2011). Mapping the conformational dynamics and pathways of spontaneous steric zipper peptide oligomerization. PLoS One, 6, e19129.
  • Miyamoto, S., & Kollman, P. A. (1992). Settle – An analytical version of the shake and rattle algorithm for rigid water models. Journal of Computational Chemistry, 13, 952–962.
  • Miyamoto, S., & Kollman, P. A. (1993). Absolute and relative binding free-energy calculations of the interaction of biotin and its analogs with streptavidin using molecular-dynamics free-energy perturbation approaches. Proteins-Structure Function and Genetics, 16, 226–245.
  • Mu, Y., & Gao, Y. Q. (2009). Self-assembly of polypeptides into left-handedly twisted fibril-like structures. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 80, 041927.
  • Nam, H. B., Kouza, M., Zung, H., & Li, M. S. (2010). Relationship between population of the fibril-prone conformation in the monomeric state and oligomer formation times of peptides: Insights from all-atom simulations. Journal of Chemical Physics, 132, 165104.
  • Nelson, R., Sawaya, M. R., Balbirnie, M., Madsen, A. O., Riekel, C., Grothe, R., & Eisenberg, D. (2005). Structure of the cross-beta spine of amyloid-like fibrils. Nature, 435, 773–778.
  • Nguyen, H. D., & Hall, C. K. (2004). Molecular dynamics simulations of spontaneous fibril formation by random-coil peptides. Proceedings of the National Academy of Sciences of the United States of America, 101, 16180–16185.
  • Nguyen, P. H., Li, M. S., Stock, G., Straub, J. E., & Thirumalai, D. (2007). Monomer adds to preformed structured oligomers of A beta-peptides by a two-stage dock-lock mechanism. Proceedings of the National Academy of Sciences of the United States of America, 104, 111–116.
  • Nguyen Truong, C., & Li, M. S. (2012). New method for determining size of critical nucleus of fibril formation of polypeptide chains. Journal of Chemical Physics, 137, 095101.
  • Nowakowski, G. S., Dooner, M. S., Valinski, H. M., Mihaliak, A. M., Quesenberry, P. J., & Becker, P. S. (2004). A specific heptapeptide from a phage display peptide library homes to bone marrow and binds to primitive hematopoietic stem cells. Stem cells, 22, 1030–1038.
  • Oostenbrink, C., Villa, A., Mark, A. E., & Van Gunsteren, W. F. (2004). A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force-field parameter sets 53A5 and 53A6. Journal of Computational Chemistry, 25, 1656–1676.
  • Pacheco-Alvarez, D., Solorzano-Vargas, R. S., & Del Rio, A. L. (2002). Biotin in metabolism and its relationship to human disease. Archives of Medical Research, 33, 439–447.
  • Seeber, M., Cecchini, M., Rao, F., Settanni, G., & Caflisch, A. (2007). Wordom: A program for efficient analysis of molecular dynamics simulations. Bioinformatics, 23, 2625–2627.
  • Senguen, F. T., Lee, N. R., Gu, X. F., Ryan, D. M., Doran, T. M., Anderson, E. A., & Nilsson, B. L. (2011). Probing aromatic, hydrophobic, and steric effects on the self-assembly of an amyloid-beta fragment peptide. Molecular Biosystems, 7, 486–496.
  • Serpell, L. C. (2000). Alzheimer’s amyloid fibrils: Structure and assembly. Biochimica Et Biophysica Acta-Molecular Basis of Disease, 1502, 16–30.
  • Song, W., Wei, G. H., Mousseau, N., & Derreumaux, P. (2008). Self-assembly of the beta 2-microglobulin NHVTLSQ peptide using a coarse-grained protein model reveals beta-barrel species. Journal of Physical Chemistry, B112, 4410–4418.
  • Straub, J. E., & Thirumalai, D. (2010). Principles governing oligomer formation in amyloidogenic peptides. Current Opinion in Structural Biology, 20, 187–195.
  • Taraballi, F., Natalello, A., Campione, M., Villa, O., Doglia, S. M., Paleari, A., & Gelain, F. (2010). Glycine-spacers influence functional motifs exposure and self-assembling propensity of functionalized substrates tailored for neural stem cell cultures. Front Neuroeng, 3, 1–9.
  • Thirumalai, D., Klimov, D. K., & Dima, R. I. (2003). Emerging ideas on the molecular basis of protein and peptide aggregation. Current Opinion in Structural Biology, 13, 146–159.
  • Tsemekhman, K., Goldschmidt, L., Eisenberg, D., & Baker, D. (2007). Cooperative hydrogen bonding in amyloid formation. Protein Science, 16, 761–764.
  • Van der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. C. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26, 1701–1718.
  • Viet, M. H., Ngo, S. T., Lam, N. S., & Li, M. S. (2011). Inhibition of aggregation of amyloid peptides by beta-sheet breaker peptides and their binding affinity. Journal of Physical Chemistry, B115, 7433–7446.
  • Waters, M. L. (2002). Aromatic interactions in model systems. Current Opinion in Chemical Biology, 6, 736–741.
  • Weber, P. C., Ohlendorf, D. H., Wendoloski, J. J., & Salemme, F. R. (1989). Structural origins of high-affinity biotin binding to streptavidin. Science, 243, 85–88.
  • Weber, P. C., Wendoloski, J. J., Pantoliano, M. W., & Salemme, F. R. (1992). Crystallographic and thermodynamic comparison of natural and synthetic ligands bound to streptavidin. Journal of the American Chemical Society, 114, 3197–3200.
  • Wilson, K. P., Shewchuk, L. M., Brennan, R. G., Otsuka, A. J., & Matthews, B. W. (1992). Escherichia-coli biotin holoenzyme synthetase biorepressor crystal-structure delineates the biotin-binding and DNA-binding domains. Proceedings of the National Academy of Sciences of the United States of America, 89, 9257–9261.
  • Wood, Z. A., Weaverl, L. H., Brown, P. H., Beckett, D., & Matthews, B. W. (2006). Co-repressor induced order and biotin repressor dimerization: A case for divergent followed by convergent evolution. Journal of Molecular Biology, 357, 509–523.
  • Wood, S. J., Wetzel, R., Martin, J. D., & Hurle, M. R. (1995). Prolines and amyloidogenicity in fragments of the Alzheimer’s peptide beta/A4. Biochemistry, 34, 724–730.
  • Xia, Z., Das, P., Shakhnovich, E. I., & Zhou, R. H. (2012). Collapse of unfolded proteins in a mixture of denaturants. Journal of the American Chemical Society, 134, 18266–18274.
  • Ye, Z. Y., Zhang, H. Y., Luo, H. L., Wang, S. K., Zhou, Q. H., Du, X. P., … Zhao, X. J. (2008). Temperature and pH effects on biophysical and morphological properties of self-assembling peptide RADA16-1. Journal of Peptide Science, 14, 152–162.
  • Zanuy, D., Ma, B. Y., & Nussinov, R. (2003). Short peptide amyloid organization: Stabilities and conformations of the islet amyloid peptide NFGAIL. Biophysical Journal, 84, 1884–1894.
  • Zanuy, D., & Nussinov, R. (2003). The sequence dependence of fiber organization. A comparative molecular dynamics study of the islet amyloid polypeptide segments 22-27 and 22-29. Journal of Molecular Biology, 329, 565–584.
  • Zhao, J. H., Liu, H. L., Liu, Y. F., Lin, H. Y., Fang, H. W., Ho, Y., & Tsai, W. B. (2009). Molecular dynamics simulations to investigate the aggregation behaviors of the a beta(17-42) oligomers. Journal of Biomolecular Structure & Dynamics, 26, 481–490.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.