139
Views
1
CrossRef citations to date
0
Altmetric
Articles

Construction of an intermediate-resolution lattice model and re-examination of the helix-coil transition: a dynamic Monte Carlo simulation

&
Pages 792-803 | Received 18 Feb 2013, Accepted 27 Mar 2013, Published online: 08 Jun 2013

References

  • Bereau, T., & Deserno, M. (2009). Generic coarse-grained model for protein folding and aggregation. Journal of Chemical Physics, 130, 235106.
  • Buchete, N. V., Straub, J. E., & Thirumalai, D. (2004). Continuous anisotropic representation of coarse-grained potentials for proteins by spherical harmonics synthesis. Journal of Molecular Graphics and Modelling, 22, 441–450.
  • Carmesin, I., & Kremer, K. (1988). The bond fluctuation method: A new effective algorithm for the dynamics of polymers in all spatial dimensions. Macromolecules, 21, 2819–2823.
  • Chan, H. S., Zhang, Z. Q., Wallin, S., & Liu, Z. R. (2011). Cooperativity, Local-Nonlocal Coupling, and Nonnative Interactions: Principles of Protein Folding from Coarse-Grained Models. Annual Review of Physical Chemistry, 62, 301–326.
  • Chen, Y. T., & Ding, J. D. (2010a). Computer simulation of the role of non-native interactions in the kinetic process of helix formation for a homopolypeptide chain. Acta Polymerica Sinica, 7, 918–923.
  • Chen, Y. T., & Ding, J. D. (2010b). Roles of non-native hydrogen-bonding interaction in helix-coil transition of a single polypeptide as revealed by comparison between Gō-like and non-Gō models. Proteins-structure Function and Bioinformatics, 78, 2090–2100.
  • Chen, J. Z. Y., & Imamura, H. (2003). Universal model for alpha-helix and beta-sheet structures in protein. Physica A-Statistical Mechanics and its Applications, 321, 181–188.
  • Chen, Y. T., Wang, M. L., Zhang, Q. L., & Liu, J. H. (2010). Construction of an implicit membrane environment for the lattice Monte Carlo simulation of transmembrane protein. Biophysical Chemistry, 147, 35–41.
  • Chen, Y. T., Zhang, Q., & Ding, J. D. (2004). A coarse-grained model and associated lattice Monte Carlo simulation of the coil-helix transition of a homopolypeptide. Journal of Chemical Physics, 120, 3467–3474.
  • Chen, Y. T., Zhang, Q., & Ding, J. D. (2006). A coarse-grained model for the formation of alpha helix with a noninteger period on simple cubic lattices. Journal of Chemical Physics, 124, 184903.
  • Chen, Y. T., Zhou, Y. Q., & Ding, J. D. (2007). The helix-coil transition re-visited. Proteins-structure Function and Bioinformatics, 69, 58–68.
  • Cui, T., Ding, J. D., & Chen, J. Z. Y. (2006). Mean first-passage times of looping of polymers with intrachain reactive monomers: Lattice Monte Carlo simulations. Macromolecules, 39, 5540–5545.
  • De Sancho, D., & Best, R. B. (2011). What is the time scale for alpha-helix nucleation? Journal of the American Chemical Society, 133, 6809–6816.
  • Deutsch, H. P., & Binder, K. (1991). Interdiffusion and self-diffusion in polymer mixtures-a Monte-Carlo study. Journal of Chemical Physics, 94, 2294–2304.
  • Dill, K. A., Bromberg, S., Yue, K. Z., Fiebig, K. M., Yee, D. P., Thomas, P. D., & Chan, H. S. (1995). Principles Of Protein Folding - A Perspective From Simple Exact Models. Protein Science, 4, 561–602.
  • Dill, K. A., Ozkan, S. B., Weikl, T. R., Chodera, J. D., & Voelz, V. A. (2007). The protein folding problem: When will it be solved? Current Opinion in Structural Biology, 17, 342–346.
  • Ding, F., Borreguero, J. M., Buldyrey, S. V., Stanley, H. E., & Dokholyan, N. V. (2003). Mechanism for the alpha-helix to beta-hairpin transition. Proteins-structure Function and Genetics, 53, 220–228.
  • Ding, F., Buldyrev, S. V., & Dokholyan, N. V. (2005). Folding Trp-cage to NMR resolution native structure using a coarse-grained protein model. Biophysical Journal, 88, 147–155.
  • He, Y., Chen, C., & Xiao, Y. (2009). United-residue (UNRES) langevin dynamics simulations of trpzip2 folding. Journal of Computational Biology, 16, 1719–1730.
  • Hilhorst, H. J., & Deutch, J. M. (1975). Analysis of Monte Carlo results on the kinetics of lattice polymer chains with excluded volume. Journal of Chemical Physics, 63, 5153–5161.
  • Irbäck, A., Sjunnesson, F., & Wallin, S. (2000). Three-helix-bundle protein in a Ramachandran model. Proceedings of the National Academy of Sciences of the United States of America, 97, 13614–13618.
  • Jani, V., Sonavane, U. B., & Joshi, R. (2011). Microsecond scale replica exchange molecular dynamic simulation of villin headpiece: An insight into the folding landscape. Journal of Biomolecular Structure & Dynamics, 28, 845–860.
  • Kabsch, W., & Sander, C. (1983). Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features. Biopolymers, 22, 2577–2637.
  • Klimov, D. K., Betancourt, M. R., & Thirumalai, D. (1998). Virtual atom representation of hydrogen bonds in minimal off-lattice models of alpha helices: Effect on stability, cooperativity and kinetics. Folding & Design, 3, 481–496.
  • Klimov, D. K., & Thirumalai, D. (1998). Cooperativity in protein folding: From lattice models with sidechains to real proteins. Folding & Design, 3, 127–139.
  • Kolinski, A., & Skolnick, J. (1994). Monte-Carlo simulations of protein-folding.1. Lattice model and interaction scheme. Proteins-structure Function and Genetics, 18, 338–352.
  • Kolinski, A., & Skolnick, J. (2004). Reduced models of proteins and their applications. Polymer, 45, 511–524.
  • Kwiecinska, J. I., & Cieplak, M. (2005). Chirality and protein folding. Journal of Physics-condensed Matter, 17, S1565–S1580.
  • Levitt, M., & Warshel, A. (1975). Computer simulation of protein folding. Nature, 253, 694–698.
  • Li, L., Mirny, L. A., & Shakhnovich, E. I. (2000). Kinetics, thermodynamics and evolution of non-native interactions in a protein folding nucleus. Nature Structural Biology, 7, 336–342.
  • Lifson, S., & Roig, A. (1961). On the theory of helix-coil transition in polypeptides. Journal of Chemical Physics, 34, 1963–1974.
  • Lindorff-Larsen, K., Piana, S., Dror, R. O., & Shaw, D. E. (2011). How fast-folding proteins fold. Science, 334, 517–520.
  • Liwo, A., Oldziej, S., Pincus, M. R., Wawak, R. J., Rackovsky, S., & Scheraga, H. A. (1997). A united-residue force field for off-lattice protein-structure simulations. 1. Functional forms and parameters of long-range side-chain interaction potentials from protein crystal data. Journal of Computational Chemistry, 18, 849–873.
  • Luo, Z. L., Ding, J. D., & Zhou, Y. Q. (2008). Folding mechanisms of individual beta-hairpins in a Gō model of Pin1 WW domain by all-atom molecular dynamics simulations. Journal of Chemical Physics, 128, 225103.
  • Makhatadze, G. I. (2006). Thermodynamics of alpha-helix formation. Advances in Protein Chemistry, 72, 199–223.
  • Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953). Equation of state calculations by fast computing machines. Journal of Chemical Physics, 21, 1087–1092.
  • Monticelli, L., Kandasamy, S. K., Periole, X., Larson, R. G., Tieleman, D. P., & Marrink, S. J. (2008). The MARTINI coarse-grained force field: Extension to proteins. Journal of Chemical Theory and Computation, 4, 819–834.
  • Mukherjee, A., & Bagchi, B. (2004). Contact pair dynamics during folding of two small proteins: Chicken villin head piece and the Alzheimer protein beta-amyloid. Journal of Chemical Physics, 120, 1602–1612.
  • Noid, W. G., Chu, J.-W., Ayton, G. S., Krishna, V., Izvekov, S., Voth, G. A., … Andersen, H. C. (2008). The multiscale coarse-graining method. I. A rigorous bridge between atomistic and coarse-grained models. Journal of Chemical Physics, 128, 244114.
  • Ohkubo, Y. Z., & Brooks, C. L., III (2003). Exploring Flory’s isolated-pair hypothesis: Statistical mechanics of helix-coil transitions in polyalanine and the C-peptide from RNase A. Proceedings of the National Academy of Sciences of the United States of America, 100, 13916–13921.
  • Okamoto, Y., & Hansmann, U. H. E. (1995). Thermodynamics of helix-coil transitions studied by multicanonical algorithms. Journal of Physical Chemistry, 99, 11276–11287.
  • Pandey, R. B., & Farmer, B. L. (2010). Globular structure of a human immunodeficiency virus-1 protease (1DIFA dimer) in an effective solvent medium by a Monte Carlo simulation. Journal of Chemical Physics, 132, 125101.
  • Qian, H., & Schellman, J. A. (1992). Helix-coil theories: A comparative study for finite length polypeptides. Journal of Physical Chemistry, 96, 3987–3994.
  • Ramachandran, G. N., & Sasisekharan, V. (1968). Conformation of polypeptide and proteins. Advances in Protein Chemistry, 23, 283–437.
  • Scholtz, J. M., & Baldwin, R. L. (1992). The mechanism of alpha-helix formation by peptides. Annual Review of Biophysics and Biomolecular Structure, 21, 95–118.
  • Shaw, D. E., Maragakis, P., Lindorff-Larsen, K., Piana, S., Dror, R. O., Eastwood, M. P., … Wriggers, W. (2010). Atomic-level characterization of the structural dynamics of proteins. Science, 330, 341–346.
  • Shimada, J., Kussell, E. L., & Shakhnovich, E. I. (2001). The folding thermodynamics and kinetics of crambin using an all-atom Monte Carlo simulation. Journal of Molecular Biology, 308, 79–95.
  • Skolnick, J., & Kolinski, A. (1990). Simulations of the folding of a globular protein. Science, 250, 1121–1125.
  • Smith, A. V., & Hall, C. K. (2001). Alpha-helix formation: Discontinuous molecular dynamics on an intermediate-resolution protein model. Proteins: Structure Function and Genetics, 44, 344–360.
  • Sorin, E. J., & Pande, V. S. (2005). Exploring the helix-coil transition via all-atom equilibrium ensemble simulations. Biophysical Journal, 88, 2472–2493.
  • Takada, S. (2012). Coarse-grained molecular simulations of large biomolecules. Current Opinion in Structural Biology, 22, 130–137.
  • Takada, S., Luthey-Schulten, Z., & Wolynes, P. G. (1999). Folding dynamics with nonadditive forces: A simulation study of a designed helical protein and a random heteropolymer. Journal of Chemical Physics, 110, 11616–11629.
  • Taketomi, H., Ueda, Y., & Gō, N. (1975). Studies on protein folding, unfolding and fluctuations by computer simulations. International Journal of Peptide and Protein Research, 7, 445–459.
  • Tao, Y., Rao, Z.-H., & Liu, S.-Q. (2010). Insight derived from molecular dynamics simulation into substrate-induced changes in protein motions of proteinase K. Journal of Biomolecular Structure & Dynamics, 28, 143–157.
  • Tozzini, V. (2005). Coarse-grained models for proteins. Current Opinion in Structural Biology, 15, 144–150.
  • van Giessen, A. E., & Straub, J. E. (2006). coarse-grained model of coil-to-helix kinetics demonstrates the importance of multiple nucleation sites in helix folding. Journal of Chemical Theory and Computation, 2, 674–684.
  • Verdier, P. H., & Stockmayer, W. H. (1962). Monte Carlo calculations on the dynamics of polymers in dilute solution. Journal of Chemical Physics, 36, 227–235.
  • Vitalis, A., & Caflisch, A. (2012). 50 Years of Lifson-Roig models: Application to molecular simulation data. Journal of Chemical Theory and Computation, 8, 363–373.
  • Wallqvist, A., & Ullner, M. (1994). A simplified amino-acid potential for use in structure predictions of proteins. Proteins: Structure Function and Genetics, 18, 267–280.
  • Xu, G. Q., Ding, J. D., & Yang, Y. L. (1997). Monte Carlo simulation of self-avoiding lattice chains subject to simple shear flow.I. Model and simulation algorithm. Journal of Chemical Physics, 107, 4070–4084.
  • Xu, J., Ren, Y., Li, J. (2013). Multiscale simulations of protein folding: application to formation of secondary structures. Journal of Biomolecular Structure & Dynamics, doi:10.1080/07391102.2012.709461.
  • Yang, Z. Y., Li, S. B., Zhang, L. X., Ur Rehman, A., & Liang, H. J. (2010). Translocation of alpha-helix chains through a nanopore. Journal of Chemical Physics, 133, 154903.
  • Zhang, Y., Kolinski, A., & Skolnick, J. (2003). TOUCHSTONE II: A new approach to ab initio protein structure prediction. Biophysical Journal, 85, 1145–1164.
  • Zhang, J., Li, W. F., Wang, J., Qin, M., Wu, L., Yan, Z. Q., … Wang, W. (2009). Protein folding simulations: From coarse-grained model to all-atom model. IUBMB Life, 61, 627–643.
  • Zhou, Y. Q., & Linhananta, A. (2002). Thermodynamics of an all-atom off-lattice model of the fragment B of Staphylococcal protein A: Implication for the origin of the cooperativity of protein folding. Journal of Physical Chemistry B, 106, 1481–1485.
  • Zimm, B. H., & Bragg, J. K. (1959). Theory of the phase transition between helix and random coil in polypeptide chains. Journal of Chemical Physics, 31, 526–535.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.