1,037
Views
11
CrossRef citations to date
0
Altmetric
Articles

Putative osmosensor – OsHK3b – a histidine kinase protein from rice shows high structural conservation with its ortholog AtHK1 from Arabidopsis

, &
Pages 1318-1332 | Received 06 Mar 2013, Accepted 19 Jun 2013, Published online: 22 Jul 2013

References

  • Anantharaman, V., & Aravind, L. (2001). The CHASE domain: A predicted ligand-binding module in plant cytokinin receptors and other eukaryotic and bacterial receptors. Trends in Biochemical Sciences, 26, 579–582. doi:10.1016/S0968-0004(01)01968-5.
  • Aravind, L., Mazumder, R., Vasudevan, S., & Koonin, E. V. (2002). Trends in protein evolution inferred from sequence and structure analysis. Current Opinion in Structural Biology, 12, 329–392. doi:10.1016/S0959-440X(02)00334-2.
  • Baikalov, I., Schroder, I., Kaczor-Grzeskowiak, M., Cascio, D., Gunsalus, R. P., & Dickerson, R. E. (1998). NarL dimerization? Suggestive evidence from a new crystal form. Biochemistry, 37, 3665–3676. doi:10.1021/bi972365a.
  • Bent, C. J., Isaac, N. W., Mitchell, T. J., & Tunnicliffe, A. R. (2004). Crystal structure of the response regulator 02 receiver domain, the essential YycF two-component system of Streptococcus pneumonia in both complexed and native states. Journal of Bacteriology, 186, 2872–2879. doi:10.1128/JB.186.9.2872-2879.2004.
  • Bilwes, A. M., Alex, L. A., Crane, B. R., & Simon, M. I. (1999). Structure of CheA, a signal transducing histidine kinase. Cell, 96, 131–141. doi:10.1016/S0092-8674(00)80966-6.
  • Chang, C., & Stewart, R. C. (1998). The two-component system: Regulation of diverse signaling pathways in prokaryotes and eukaryotes. Plant Physiology, 117, 723–731. doi:10.1104/pp.117.3.723.
  • Cole, C., Barber, J. D., & Barton, G. J. (2008). The Jpred 3 secondary structure prediction server. Nucleic Acids Research, 36, W197–W201. doi:10.1093/nar/gkn238.
  • Djordjevic, S., Goudreau, P. N., Xu, Q., Stock, A. M., & West, A. H. (1998). Structural basis for methylesterase CheB regulation by a phosphorylation-activated domain. Proceedings of the National Academy of Sciences, 95, 1381–1386. doi:10.1073/pnas.95.4.1381.
  • Duhovny, D., Nussinov, R., & Wolfson, H. J. (2002). Efficient unbound docking of rigid molecules. Lecture Notes in Computer Science, 2452, 185–200. doi:10.1007/3-540-45784-4_14.
  • Dutta, R., & Inouye, M. (2000). GHKL, an emergent ATPase/kinase superfamily. Trends in Biochemical Sciences, 25, 24–28. doi:10.1016/S0968-0004(99)01503-0.
  • Eswar, N., Marti-Renom, M. A., Webb, B., Madhusudhan, M. S., Eramian D., … Sali, A. (2006). Comparative Protein Structure Modeling With MODELLER. Current Protocols in Bioinformatics, 15, 5.6.1–5.6.30. Retrieved from http://onlinelibrary.wiley.com
  • Finn, R. D., Mistry, J., Tate, J., Coggill, P., Heger, A., Pollington, J. E., … Bateman, A. (2010). The Pfam protein families database. Nucleic Acid Research, 38, D211–D222. Retrieved from http://www.ncbi.nlm.nih.gov/pmc
  • Frishman, D., & Argos, P. (1995). Knowledge-based protein secondary structure assignment. Proteins: Structure, Function and Genetics, 23, 566–579. doi:10.1002/prot.340230412
  • Frishman, D., & Argos, P. (1996). Incorporation of long-distance interactions into a secondary structure prediction algorithm. Protein Engineering, 9, 133–142. Retrieved from http://peds.oxfordjournals.org
  • Greene, L. H., Lewis, T. E., Addou, S., Cuff, A., Dallman, T., Dibley, M., … Orengo, C. A. (2007). The CATH domain structure database: New protocols and classification levels give a more comprehensive resource for exploring evolution. Nucleic Acids Research, 35, D291–D297. doi:10.1093/nar/gkl959.
  • Grefen, C., & Harter, K. (2004). Plant two-component systems: Principles, functions, complexity and cross talk. Planta, 219, 733–742. doi:10.1007/s00425-004-1316-4.
  • Gu, H., Zhu, P., Jiao, Y., Meng, Y., & Chen, M. (2011). PRIN, a predicted rice interactome network. BMC Bioinformatics, 12, 161. doi:10.1186/1471-2105-12-161.
  • Hess, J. F., Oosawa, K., Kaplan, N., & Simon, M. I. (1988). Phosphorylation of three proteins in the signaling pathway of bacterial chemotaxis. Cell, 53, 79–87. doi:10.1016/0092-8674(88)90489-8.
  • Hothorn, M., Dabi, T., & Chory, J. (2011). Structural basis for cytokinin recognition by Arabidiopsis thaliana histidine kinase 4. Nature Chemical Biology, 7, 766–768. doi:10.1038/nchembio.667.
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD – Visual molecular dynamics. Journal of Molecular Graphics, 14, 33–38. doi:10.1016/0263-7855(96)00018-5.
  • Hwang, I., Chen, H. C., & Sheen, J. (2002). Two-component signal transduction pathways in Arabidopsis. Plant Physiology, 129, 500–515. doi:10.1104/pp.005504.
  • Imamura, A., Hanaki, N., Nakamura, A., Suzuki, T., Taniguchi, M., Kiba, T., … Mizuno, T. (1999). Compilation and characterization of Arabidopsis thaliana response regulators implicated in His-Asp phosphorelay signal transduction. Plant and Cell Physiology, 40, 733–742. doi:10.1093/oxfordjournals.pcp.a029600.
  • Janiak-spens, F., Sparling, D. P., & West, A. H. (2000). Novel role for an HPt domain in stabilizing the phosphorylated state of a response regulator domain. Journal of Bacteriology, 182, 6673–6678. doi:10.1128/JB.182.23.6673-6678.2000.
  • Jones, D. T. (1999a). Protein secondary structure prediction based on position-specific scoring matrices. Journal of Molecular Biology, 292, 195–202. doi:10.1006/jmbi.1999.3091.
  • Jones, D. T. (1999b). GenTHREADER: An efficient and reliable protein fold recognition method for genomic sequences. Journal of Molecular Biology, 287, 797–815. doi:10.1006/jmbi.1999.2583.
  • Kato, M., Mizuno, T., Shimizu, T., & Hakoshima, T. (1997). Insights into multistep phosphorelay from the crystal structure of the C-terminal HPt domain of ArcB. Cell, 88, 717–723. doi:10.1016/S0092-8674(00)81914-5.
  • Kato, M., Shimizu, T., Mizunob, T., & Hakoshimaa, T. (1999). Structure of the histidine-containing phospho- transfer (HPt) domain of the anaerobic sensor protein ArcB complexed with the chemotaxis response regulator CheY. Acta Crystallographica Section D: Biological Crystallography, 55, 1257–1263. Retrieved from http://scripts.iucr.org
  • Kiba, T., Taniguchi, M., Imamura, A., Ueguchi, C., Mizuno, T., & Sugiyama, T. (1999). Differential expression of genes for response regulators in response to cytokinins and nitrate in Arabidopsis thaliana. Plant and Cell Physiology, 40, 767–771. doi:10.1093/oxfordjournals.pcp.a029604.
  • Krivov, G. G., Shapovalov, M. V., & Dunbrack, R. L. (2009). Improved prediction of protein side-chain conformations with SCWRL4. Proteins, 77, 778–795. doi:10.1002/prot.22488.
  • Lambert, C., Leonard, N., De Bolle, X., & Depiereux, E. (2002). ESyPred3D: Prediction of proteins 3D structures. Bioinformatics, 18, 1250–1256. doi:10.1093/bioinformatics/18.9.1250.
  • Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., … Higgins, D. G. (2007). Clustal W and Clustal X version 2.0. Bioinformatics, 23, 2947–2948. doi:10.1093/bioinformatics/btm404.
  • Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK: A program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26, 283–291. doi:10.1107/S0021889892009944.
  • Lohrmann, J., & Harter, K. (2002). Plant two-component signaling systems and the role of response regulators. Plant Physiology, 128, 363–369. doi:10.1104/pp.010907.
  • Marchler-Bauer, A., Zheng, C., Chitsaz, F., Derbyshire, M. K., Geer, L. Y., Geer, R. C., … Bryant, S. H. (2009). CDD: Specific functional annotation with the conserved domain database. Nucleic Acids Research, 37, D205–D210. doi:10.1093/nar/gkn845.
  • Marina, A., Mott, C., Auyzenber, A., Hendrickson, W. A., & Waldburger, C. D. (2001). Structural and mutational analysis of PhoQ histidine kinase catalytic domain. Journal of Biological Chemistry, 276, 41182–41190. doi:10.1074/jbc.M106080200.
  • Mizuno, T. (1998). His-Asp phosphotransfer signal transduction. Journal of Biochemistry, 123, 555–563. doi:10.1093/oxfordjournals.jbchem.a021972.
  • Muller-Dieckmann, H. J., Grantz, A. A., & Kim, S. H. (1999). The structure of the signal receiver domain of the Arabidopsis thaliana ethylene receptor ETR1. Structure with Folding & Design, 7, 1547–15569. doi:10.1016/S0969-2126(00)88345-8.
  • Murzin, A. G., Brenner, S. E., Hubbard, T., & Chothia, C. (1995). SCOP: A structural classification of proteins database for the investigation of sequences and structures. Journal of Molecular Biology, 247, 536–540. doi:10.1016/S0022-2836(05)80134-2.
  • Nielsen, M., Lundegaard, C., Lund, O., & Petersen, T. N. (2010). CPHmodels-3.0-remote homology modeling using structure guided sequence profiles. Nucleic Acids Research, 38, W576–W581. doi:10.1093/nar/gkq535.
  • Pareek, A., Singh, A., Kumar, M., Kushwaha, H. R., Lynn, A. M., & Singla-Pareek, S. L. (2006). Whole-genome analysis of Oryza sativa reveals similar architecture of two-component signaling machinery with Arabidopsis. Plant Physiology, 142, 380–397. doi:10.1104/pp.106.086371.
  • Parkinson, J. S., & Kofoid, E. C. (1992). Communication modules in bacterial signaling proteins. Annual Review of Genetics, 26, 71–112. doi:10.1146/annurev.ge.26.120192.000443.
  • Posas, F., Wurgler-Murphy, S. M., Maeda, T., Witten, E. A., Thai, T. C., & Saito, H. (1996). Yeast HOG1 MAP kinase cascade is regulated by a multistep phosphorelay mechanism in the SLN1-YPD1-SSK1 “two-component” Osmosensor. Cell, 86, 865–875. doi:10.1016/S0092-8674(00)80162-2.
  • Riechmann, J. L., Heard, J., Martin, G., Reuber, L., Jiang, C., Keddie, J., … Yu, G. (2000). Arabidopsis transcription factors: Genome-wide comparative analysis among eukaryotes. Science, 290, 2105–2110. doi:10.1126/science.290.5499.2105.
  • Robinson, V. L., Buckler, D. R., & Stock, A. M. (2000). A tale of two components: A novel kinase and a regulatory switch. Natural Structural Biology, 7, 626–633. doi:10.1038/77915.
  • Russell, R. B., & Barton, G. J. (1992). Multiple protein sequence alignment from tertiary structure comparison: Assignment of global and residue confidence levels. Proteins, 14, 309–323. doi:10.1002/prot.340140216.
  • Saito, H. (2001). Histidine phosphorylation and two-component signaling in eukaryotic cells. Chemical Reviews, 101, 2497–2509. doi:10.1021/cr000243+.
  • Sakakibara, H., Hayakawa, A., Deji, A., Gawronski, S., & Sugiyama, T. (1999). His-Asp phosphotransfer possibly involved in a nitrogen signal transduction mediated by cytokinin in maize: molecular cloning of cDNAs for two-component regulatory factors and demonstration of phosphotransfer activity in vitro. Plant Molecular Biology, 41, 63–573. Retrieved from http://link.springer.com/article
  • Sakakibara, H., Taniguchi, M., & Sugiyama, T. (2000). His-Asp phosphorelay signaling: A communication avenue between plants and their environment. Plant Molecular Biology, 42, 273–278. Retrieved from http://link.springer.com/article
  • Schell, M. A., Denny, T. P., & Huang, J. (1994). VsrA, Lt second two-component system regulating virulence genes of Preudomrmas solanacearum. Molecular Microbiology, 11, 489–500. Retrieved from http://onlinelibrary.wiley.com
  • Schneidman-Duhovny, D., Inbar, Y., Polak, V., Shatsky, M., Halperin, I., Benyamini, H., … Wolfson, H. J. (2003). Taking geometry to its edge: Fast unbound rigid (and hinge-bent) docking. Proteins, 52, 107–112. doi:10.1002/prot.10397.
  • Shi, J., Blundell, T. L., & Mizuguchi, K. (2001). FUGUE: Sequence-structure homology recognition using environment-specific substitution tables and structure- dependent gap penalties. Journal of Molecular Biology, 310, 243–257. doi:10.1006/jmbi.2001.4762.
  • Singh, A., Kushwaha, H. R., & Sharma, P. (2008). Molecular modelling and comparative structural account of aspartyl beta-semialdehyde dehydrogenase of Mycobacterium tuberculosis (H37Rv). Journal of Molecular Modeling, 14, 249–263. doi:10.1007/s00894-008-0267-2.
  • Sippl, M. J. (1993). Recognition of errors in three-dimensional structures of proteins. Proteins, 17, 355–362. doi:10.1002/prot.340170404.
  • Song, H. K., Lee, J. Y., Lee, L. G., Moon, J., Min, K., Yang, J. K., & Suh, S. W. (1998). Insights into eukaryotic multistep phosphorelay signal transduction revealed by the crystal structure of Ypd1p from Saccharomyces cerevisiae. Journal of Molecular Biology, 293, 753–761. doi:10.1006/jmbi.1999.3215.
  • Stock, A. M., Robinson, V. L., & Goudreau, P. N. (2000). Two-component signal transduction. Annual Review of Biochemistry, 69, 183–215. doi:10.1146/annurev.biochem.69.1.183.
  • Suzuki, T., Imamura, A., Ueguchi, C., & Mizuno, T. (1998). Histidine-containing phosphotransfer (HPt) signal transducers implicated in His-to-Asp phosphorelay in Arabidopsis. Plant and Cell Physiology, 39, 1258–1268. doi:10.1093/oxfordjournals.pcp.a029329.
  • To, J. P., Haberer, G., Ferreira, F. J., Deruere, J., Mason, M. G., Schaller, G. E., … Kieber, J. J. (2004). Type-A Arabidopsis response regulators are partially redundant negative regulators of cytokinin signaling. Plant Cell, 16, 658–671. doi:10.1105/tpc.018978.
  • Tomomori, C., Toshiyuki, T., Dutta, R., Park, H., Saha, S. K., Zhu, Y., … Ikura, M. (1999). Solution structure of the homodimeric core domain of Escherichia coli histidine kinase EnvZ. Natural Structural Biology, 6, 729–734. doi:10.1038/11495.
  • Urao, T., Yamaguchi-Shinozaki, K., & Shinozaki, K. (2000). Two-component systems in plant signal transduction. Trends in Plant Science, 5, 67–74. doi:10.1016/S1360-1385(99)01542-3.
  • Varughese, K. I., Madhusudan, L., Zhou, X. Z., Whiteley, J. M., & Hoch, J. A. (1998). Formation of a novel four-helix bundle and molecular recognition sites by dimerization of a response regulator phosphotransferase. Molecular Cell, 2, 485–493. doi:10.1016/S1097-2765(00)80148-3.
  • Volkman, B. F., Nohaile, N. J., Amy, N. K., Kustu, S., & Wemmer, D. E. (1995). Three dimensional solution structure of the N-terminal receiver domain of NtrC. Biochemistry, 34, 413–1424. doi:10.1021/bi00004a036.
  • Wiederstein, M., & Sippl, M. J. (2007). ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research, 35, W407–W410. doi:10.1093/nar/gkm290.
  • Xu, Q., Porter, S. W., & West, A. H. (2003). The yeast YPD1/SLN1 complex: Insights into molecular recognition in two-component signaling systems. Structure, 11, 1569–1581. doi:10.1016/j.str.2003.10.016.
  • Xu, Q., & West, A. H. (1999). Conservation of structure and function among histidine-containing phosphotransfer (HPt) domains as revealed by the crystal structure of YPD1. Journal of Molecular Biology, 292, 1039–1050. doi:10.1006/jmbi.1999.3143.
  • Yang, Y., & Inouye, M. (1993). Requirement of both kinase and phosphatase activities of an Escherichia coli receptor (Tazl) for ligand dependent signal transduction. Journal of Molecular Biology, 231, 335–342. doi:10.1006/jmbi.1993.1286.
  • Zhulin, I. B., Nikolskaya, A. N., & Galperin, M. Y. (2003). Common extracellular sensory domains in transmembrane receptors for diverse signal transduction pathways in bacteria and archaea. Journal of Bacteriology, 185, 285–294.