265
Views
7
CrossRef citations to date
0
Altmetric
Articles

The entropic nature of protein thermal stabilization

, , &
Pages 1396-1405 | Received 23 Apr 2013, Accepted 24 Jun 2013, Published online: 24 Jul 2013

References

  • Akke, M. (2012). Conformational dynamics and thermodynamics of protein-ligand binding studied by NMR relaxation. Biochemical Society Transactions, 40, 419–423.
  • Baldwin, R. L. (2007). Energetics of protein folding. Journal of Molecular Biology, 371, 283–301.
  • Brandts, J. F. (1964). The thermodynamics of protein denaturation. I. The denaturation of chymotrypsin. Journal of the American Chemical Society, 86, 4291–4301.
  • Brandts, J.F. (1969). Structure and stability of biological macromolecules: Conformational transition of proteins in water and in aqueous mixture. (Eds.: S.N. Timasheff, G.D. Fasman), M. Dekker, New York.
  • Catanzano, F., Graziano, G., Fusi, P., Tortora, P., & Barone, G. (1998). Differential scanning calorimetry study of the thermodynamic stability of some mutants of Sso7d from Sulfolobus solfataricus. Biochemistry, 37, 10493–10498.
  • D’Aquino, J. A., Gomez, J., Hilser, V. J., Lee, Kon Ho, Amzel, L. M., & Freire, E. (1996). The magnitude of the backbone conformational entropy change in protein folding. Proteins, 25, 143–156.
  • Doig, A. J., & Sternberg, M. J. E. (1995). Side-chain conformational entropy in protein folding. Protein Science, 4, 2247–2251.
  • Eisenmesser, E. Z., Bosco, D. A., Akke, M., & Kern, D. (2002). Enzyme dynamics during catalysis. Science, 295, 1520–1523.
  • Frederick, K. K., Marlow, M. S., Valentine, K. G., & Wand, A. J. (2007). Conformational entropy in molecular recognition by proteins. Nature, 448, 325–329.
  • Jarymowycz, V. A., & Stone, M. J. (2006). Fast time scale dynamics of protein backbones: NMR relaxation methods, applications and functional consequences. Chemical Reviews, 106, 1624–1671.
  • Kanehisa, M. I., & Ikegami, A. (1977). Structural changes and fluctuations of proteins. II. Analysis of the denaturation of globular proteins. Biophysical Chemistry, 6, 131–149.
  • Karplus, M., & Kuriyan, J. (2005). Molecular dynamics and protein function. Proceedings of the National academy of Sciences of the United States of America, 102, 6679–6685.
  • Karplus, M., & McCammon, J. A. (1983). Dynamics of proteins: Elements and function. Annual Review of Biochemistry, 53, 263–300.
  • Kay, L. E. (1998). Protein dynamics from NMR. Nature Structural Biology, 5, 513–517.
  • Khechinashvili, N. N. (1990). Thermodynamic properties of globular proteins and the principle of stabilization of their native structure. Biochimica et Biophysica Acta, 1040, 346–354.
  • Khechinashvili, N. N., Fedorov, M. V., Kabanov, A. V., Monti, S., Ghio, C., & Soda, K. (2006). Side chain dynamics and alternative hydrogen bonding in the mechanism of protein thermostabilization. Journal of Biomolecular Structure and Dynamics, 24, 255–262.
  • Khechinashvili, N. N., Janin, J., & Rodier, F. (1995). Thermodynamics of the temperature-induced unfolding of globular proteins. Protein Science, 4, 1315–1324.
  • Khechinashvili, N. N., Volchkov, S. A., Kabanov, A. V., & Barone, G. (2008). Thermal stability of proteins does not correlate with the energy of intramolecular interactions. Biochimica et Biophysica Acta, 1784, 1830–1834.
  • Kimura, S. R., Brower, R. C., Vajda, S., & Camacho, C. J. (2001). Dynamical view of the positions of key side chains in protein-protein recognition. Biophysics Journal, 80, 635–642.
  • Knapp, S., Karshikoff, A., Berndt, K. D., Christova, P., Atanasov, B., & Ladenstein, R. (1996). Thermal unfolding of the DNA-binding protein Sso7d from hyperthermophile Sulfolobus solfataricus. Journal of Molecular Biology, 264, 1132–1144.
  • Lazaridis, T., Archontis, G., & Karplus, M. (1995). Enthalpic contribution to protein stability: Insights from atom-based calculations and statistical mechanics. Advances in Protein Chemistry, 47, 231–306.
  • Lee, K. H., Xie, D., Freire, E., & Amzel, L. M. (1994). Estimation of changes in side chain configurational entropy in binding and folding: General methods and application to helix formation. Proteins, 20, 68–84.
  • Li, X., & Honig, B. (1999). Electrostatic contributions to the stability of hyperthermophilic proteins. Journal of Molecular Biology, 289, 1435–1444.
  • Liang, J., & Dill, K. A. (2001). Are proteins well-packed? Biophysics Journal, 81, 751–766.
  • Lindorff-Larsen, K., Best, R. B., DePristo, M. A., Dobson, Ch M., & Vendruscolo, M. (2005). Simultaneous determination of protein structure and dynamics. Nature, 433, 128–132.
  • Lumry, R. & Biltonen, R. (1969). Structure and stability of biological macromolecules. The subtle conformational changes. (Eds.: S.N. Timasheff, G.D. Fasman), M. Dekker, New York.
  • Makhatadze, G. I., & Marahiel, M. A. (1994). Effect of pH and phosphate ions on self-association properties of the major cold-shock protein from Bacillus subtilis. Protein Science, 3, 2144–2147.
  • Makhatadze, G., & Privalov, P. L. (1993). Contribution of hydration to protein folding thermodynamics. I. The enthalpy of hydration. Journal of Molecular Biology, 232, 639–659.
  • Morse, Ph. M. (1964). Thermal physics: Chapter 6, entropy. New York, NY: Benjamin, W.A.
  • Pace, C. N., Alston, R. W., & Shaw, K. L. (2000). Charge-charge interactions influence the denatured state ensemble and contribute to protein stability. Protein Science, 9, 1395–1398.
  • Perl, D., Holtermann, G., & Schmid, F. X. (2001). Role of the chain termini for the folding transition state of the cold shock protein. Biochemistry, 40, 15501–15511.
  • Perl, D., Mueller, U., Heinemann, U., & Schmid, F. X. (2000). Two exposed amino acid residues confer thermostability on a cold-shock protein. Natural Structural Biology, 7, 380–383.
  • Perl, D., & Schmid, F. X. (2001). Electrostatic stabilization of a thermophilic cold-shock protein. Journal of Molecular Biology, 313, 343–357.
  • Perl, D., Welker, C., Schindler, T., Schröder, K., Marahiel, M. A., Jaenicke, R., & Schmid, F. X. (1998). Conservation of rapid two-state folding in mesophilic, thermophilic and hyperthermophilic cold shock proteins. Natural Structural Biology, 5, 229–235.
  • Petrosian, S. A., & Makhatadze, G. I. (2000). Contribution of proton linkage to the thermodynamic stability of the major cold-shock protein of Escherichia coli CspA. Protein Science, 9, 387–394.
  • Privalov, P. L., & Makhatadze, G. I. (1993). Contribution of hydration to protein folding thermodynamics. II. The entropy and Gibbs energy of hydration. Journal of Molecular Biology, 232, 660–679.
  • Rasmussen, B. F., Stock, A. M., Ringe, D., & Petsko, G. A. (1992). Crystalline ribonuclease A loses function below the dynamical transition at 220 K. Nature, 357, 423–424.
  • Rees, D. C., & Robertson, A. D. (2001). Some thermodynamic implication for the thermostability of proteins. Protein Science, 10, 1187–1194.
  • Reid, K. L., Rodriguez, H. M., Hillier, B. J., & Gregoret, L. M. (1998). Stability and folding properties of a model β-sheet protein Escherichia coli CspA. Protein Science, 7, 470–479.
  • Robertson, A. D., & Murphy, K. P. (1997). Protein structure and the energetics of protein stability. Chemical Reviews, 97, 1251–1267.
  • Scouras, A. D., & Dagget, V. (2011). The dynameomics rotamer library: Amino acid side chain conformations and dynamics from comprehensive molecular dynamics simulations in water. Protein Science, 20, 341–352.
  • Stone, M. J. (2001). NMR relaxation studies of the role of conformational entropy in protein stability and ligand binding. Accounts of Chemical Research, 34, 379–388.
  • Sturtevant, J. M. (1977). Heat capacity and entropy changes in processes involving proteins. Proceedings of the National academy of Science, 74, 2236–2240.
  • Tzeng, S. R., & Kalodimos, C. G. (2012). Protein activity regulation by conformational entropy. Nature, 488, 236–240.
  • Wassenberg, D., Welker, C., & Jaenicke, R. (1999). Thermodynamics of the unfolding of the cold-shock protein from Thermotoga maritima. Journal of Molecular Biology, 289, 187–193.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.