617
Views
28
CrossRef citations to date
0
Altmetric
Articles

Zebra: a web server for bioinformatic analysis of diverse protein families

, , &
Pages 1752-1758 | Received 02 May 2013, Accepted 10 Aug 2013, Published online: 13 Sep 2013

References

  • Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., & Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Research, 25, 3389–3402.
  • Balchin, D., Fanucchi, S., Achilonu, I., Adamson, R. J., Burke, J., Fernandes, M., … Dirr, H. W. (2010). Stability of the domain interface contributes towards the catalytic function at the H-site of class alpha glutathione transferase A1–1. Biochimica et Biophysica Acta (BBA)-Proteins & Proteomics, 1804, 2228–2233.
  • Casari, G., Sander, C., & Valencia, A. (1995). A method to predict functional residues in proteins. Nature Structural & Molecular Biology, 2, 171–178.
  • Chen, K., & Arnold, F. H. (1993). Tuning the activity of an enzyme for unusual environments: Sequential random mutagenesis of subtilisin E for catalysis in dimethylformamide. Proceedings of the National Academy of Sciences, 90, 5618–5622.
  • Dirr, H., Reinemer, P., & Huber, R. (1994). X-ray crystal structures of cytosolic glutathione S-transferases. European Journal of Biochemistry, 220, 645–661.
  • Dixon, D. P., Lapthorn, A., & Edwards, R. (2002). Plant glutathione transferases. Genome Biology, 3, 3004–3004.
  • Fischer, J. D., Mayer, C. E., & Söding, J. (2008). Prediction of protein functional residues from sequence by probability density estimation. Bioinformatics, 24, 613–620.
  • Holm, L., & Sander, C. (1996). Mapping the protein universe. Science, 273, 595–602.
  • Ji, X., Johnson, W. W., Sesay, M. A., Dickert, L., Prasad, S. M., Ammon, H. L., … Gilliland, G. L. (1994). Structure and function of the xenobiotic substrate binding site of a glutathione S-transferase as revealed by X-ray crystallographic analysis of product complexes with the diastereomers of 9-(S-glutathionyl)-10-hydroxy-9, 10-dihydrophenanthrene. Biochemistry, 33, 1043–1052.
  • Koonin, E. V., & Galperin, M. Y. (2003). Sequence-evolution-function: computational approaches in comparative genomics. Boston, MA: Kluwer Academic.
  • Krissinel, E., & Henrick, K. (2004). Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallographica Section D: Biological Crystallography, 60, 2256–2268.
  • Lee, M. M., Chan, M. K., & Bundschuh, R. (2008). Simple is beautiful: A straightforward approach to improve the delineation of true and false positives in PSI-BLAST searches. Bioinformatics, 24, 1339–1343.
  • Menke, M., Berger, B., & Cowen, L. (2008). Matt: Local flexibility aids protein multiple structure alignment. PLoS Computational Biology, 4, e10.
  • Neuefeind, T., Huber, R., Dasenbrock, H., Prade, L., & Bieseler, B. (1997). Crystal structrure of herbicide-detoxifying maize glutathione S-transferase-I in complex with lactoylglutathione: Evidence for an induced-fit mechanism. Journal of Molecular Biology, 274, 446–453.
  • Nilsson, L. O., Gustafsson, A., & Mannervik, B. (2000). Redesign of substrate-selectivity determining modules of glutathione transferase A1–1 installs high catalytic efficiency with toxic alkenal products of lipid peroxidation. Proceedings of the National Academy of Sciences, 97, 9408–9412.
  • Oinonen, C., & Rouvinen, J. (2000). Structural comparison of Ntn-hydrolases. Protein Science, 9, 2329–2337.
  • Ollis, D. L., Cheah, E., Cygler, M., Dijkstra, B., Frolow, F., Franken, S. M., … Goldman, A. (1992). The α/β hydrolase fold. Protein Engineering, 5, 197–211.
  • Pleiss, J. (2012). Rational design of enzymes. In K. Drauz, H. Gröger, & O. May (Eds.), Enzyme Catalysis in Organic Synthesis (3rd ed.). (pp. 89–117). Weinheim: Wiley-VCH.
  • Reetz, M. T., Bocola, M., Carballeira, J. D., Zha, D., & Vogel, A. (2005). Expanding the range of substrate acceptance of enzymes: Combinatorial active-site saturation test. Angewandte Chemie International Edition, 44, 4192–4196.
  • Reetz, M. T., Zonta, A., Schimossek, K., Jaeger, K. E., & Liebeton, K. (1997). Creation of enantioselective biocatalysts for organic chemistry by in vitro evolution. Angewandte Chemie International Edition, 36, 2830–2832.
  • Sheehan, D., Meade, G., Foley, V. M., & Dowd, C. A. (2001). Structure, function and evolution of glutathione transferases: Implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochemical Journal, 360(Pt 1), 1–16.
  • Stenberg, G., Board, P. G., Carlberg, I., & Mannervik, B. (1991). Effects of directed mutagenesis on conserved arginine residues in a human class alpha glutathione transferase. Biochemical Journal, 274, 549–555.
  • Suplatov, D. A., Arzhanik, V. K., & Švedas, V. K. (2011). Comparative bioinformatic analysis of active site structures in evolutionarily remote homologues of α, β-hydrolase superfamily enzymes. Acta Naturae, 3, 93–98.
  • Suplatov, D. A., Besenmatter, W., Švedas, V. K., & Svendsen, A. (2012). Bioinformatic analysis of alpha/beta-hydrolase fold enzymes reveals subfamily-specific positions responsible for discrimination of amidase and lipase activities. Protein Engineering Design and Selection, 25, 689–697.
  • Suplatov, D., Shalaeva, D., Kirilin, E., Arzhanik, V., & Švedas, V. (2013). Bioinformatic analysis of protein families for identification of variable amino acid residues responsible for functional diversity. Journal of Biomolecular Structure & Dynamics. doi:10.1080/07391102.2012.750249.
  • Taly, J. F., Magis, C., Bussotti, G., Chang, J. M., Di Tommaso, P., Erb, I., … Notredame, C. (2011). Using the T-Coffee package to build multiple sequence alignments of protein, RNA, DNA sequences and 3D structures. Nature Protocols, 6, 1669–1682.
  • Todd, A. E., Orengo, C. A., & Thornton, J. M. (2001). Evolution of function in protein superfamilies, from a structural perspective. Journal of Molecular Biology, 307, 1113–1144.
  • Zeng, K., Rose, J. P., Chen, H. C., Strickland, C. L., Tu, C. P. D., & Wang, B. C. (1994). A surface mutant (G82R) of a human α-glutathione S-transferase shows decreased thermal stability and a new mode of molecular association in the crystal. Proteins: Structure, Function, and Bioinformatics, 20, 259–263.
  • Zhang, P., Liu, S., Shan, S. O., Ji, X., Gilliland, G. L., & Armstrong, R. N. (1992). Modular mutagenesis of exons 1, 2, and 8 of a glutathione S-transferase from the mu class. Mechanistic and structural consequences for chimeras of isoenzyme 3–3. Biochemistry, 31, 10185–10193.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.