164
Views
2
CrossRef citations to date
0
Altmetric
Articles

Substrate-mediated proton relay mechanism for the religation reaction in topoisomerase II

, , , , , & show all
Pages 1759-1765 | Received 10 Jan 2013, Accepted 12 Aug 2013, Published online: 19 Sep 2013

References

  • Aravind, L., Leipe, D. D., & Koonin, E. V. (1998). Toprim – A conserved catalytic domain in type IA and II topoisomerases, DnaG-type primases, OLD family nucleases and RecR proteins. Nucleic Acids Research, 26, 4205–4213.
  • Bailly, C. (2012). Contemporary challenges in the design of topoisomerase II inhibitors for cancer chemotherapy. Chemical Reviews, 112, 3611–3640.
  • Berger, J. M., Fass, D., Wang, J. C., & Harrison, S. C. (1998). Structural similarities between topoisomerases that cleave one or both DNA strands. Proceedings of the National academy of Sciences of the USA, 95, 7876–7881.
  • Bradbury, B. J., & Pucci, M. J. (2008). Recent advances in bacterial topoisomerase inhibitors. Current Opinion in Pharmacology, 8, 574–581.
  • Chen, S.-J., & Wang, J. C. (1998). Identification of active site residues in Escherichia coli DNA topoisomerase I. Journal of Biological Chemistry, 273, 6050–6056.
  • Deweese, J. E., Guengerich, F. P., Burgin, A. B., & Osheroff, N. (2009). Metal ion interactions in the DNA cleavage/ligation active site of human topoisomerase IIα. Biochemistry, 48, 8940–8947.
  • Deweese, J. E., & Osheroff, N. (2009). The DNA cleavage reaction of topoisomerase II: Wolf in sheep’s clothing. Nucleic Acids Research, 37, 738–748.
  • Deweese, J. E., & Osheroff, N. (2010). The use of divalent metal ions by type II topoisomerases. Metallomics, 2, 450–459.
  • Ghilarov, D. A., & Shkundina, I. S. (2012). DNA topoisomerases and their functions in a cell. Molecular Biology, 46, 47–57.
  • Goto, T., Laipis, P., & Wang, J. C. (1984). The purification and characterization of DNA topoisomerases I and II of the yeast Saccharomyces cerevisiae. Journal of Biological Chemistry, 259, 10422–10429.
  • Hess, B., Kutzner, C., van der Spoel, D., & Lindahl, E. (2008). GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. Journal of Chemical Theory and Computation, 4, 435–447.
  • Kendall, R. A., Apra, E., Bernholdt, D. E., Bylaska, E. J., Dupuis, M., Fann, G. I., … Wong, A. T. (2000). High performance computational chemistry: An overview of NWChem a distributed parallel application. Computer Physics Communications, 128, 260–283.
  • Lassila, J. K., Zalatan, J. G., & Herschlag, D. (2011). Biological phosphoryl-transfer reactions: Understanding mechanism and catalysis. Annual Review of Biochemistry, 80, 669–702.
  • Lindorff-Larsen, K., Piana, S., Palmo, K., Maragakis, P., Klepeis, J. L., Dror, R. O., & Shaw, D. E. (2010). Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins: Structure, Function, and Bioinformatics, 78, 1950–1958.
  • Liu, Q., & Wang, J. C. (1998). Identification of active site residues in the “GyrA” half of yeast DNA topoisomerase II. Journal of Biological Chemistry, 273, 20252–20260.
  • Liu, Q., & Wang, J. C. (1999). Similarity in the catalysis of DNA breakage and rejoining by type IA and IIA DNA topoisomerases. Proceedings of the National academy of Sciences of the USA, 96, 881–886.
  • Mueller-Planitz, F., & Herschlag, D. (2008). Coupling between ATP binding and DNA cleavage by DNA topoisomerase II: A unifying kinetic and structural mechanism. Journal of Biological Chemistry, 283, 17463–17476.
  • Narula, G., Annamalai, T., Aedo, S., Cheng, B., Sorokin, E., Wong, A., & Tse-Dinh, Y.-C. (2011). The strictly conserved Arg-321 residue in the active site of Escherichia coli topoisomerase I plays a critical role in DNA rejoining. Journal of Biological Chemistry, 286, 18673–18680.
  • Noble, C. G., & Maxwell, A. (2002). The role of GyrB in the DNA cleavage-religation reaction of DNA gyrase: A proposed two metal-ion mechanism. Journal of Molecular Biology, 318, 361–371.
  • Okada, Y., Ito, Y., Kikuchi, A., Nimura, Y., Yoshida, S., & Suzuki, M. (2000). Assignment of functional amino acids around the active site of human DNA topoisomerase IIα. Journal of Biological Chemistry, 275, 24630–24638.
  • Perry, K., & Mondragon, A. (2002). Biochemical characterization of an invariant histidine involved in Escherichia coli DNA topoisomerase I catalysis. Journal of Biological Chemistry, 277, 13237–13245.
  • Pommier, Y., Leo, E., Zhang, H., & Marchand, C. (2010). DNA topoisomerases and their poisoning by anticancer and antibacterial drugs. Chemistry & Biology, 17, 421–433.
  • Schmidt, B. H., Burgin, A. B., Deweese, J. E., Osheroff, N., & Berger, J. M. (2010). A novel and unified two-metal mechanism for DNA cleavage by type II and IA topoisomerases. Nature, 465, 641–645.
  • Schoeffler, A. J., & Berger, J. M. (2008). DNA topoisomerases: Harnessing and constraining energy to govern chromosome topology. Quarterly Reviews of Biophysics, 41, 41–101.
  • Tse-Dinh, Y. C. (1986). Uncoupling of the DNA breaking and rejoining steps of Escherichia coli type I DNA topoisomerase. Journal of Biological Chemistry, 261, 10931–10935.
  • Tse-Dinh, Y.-C. (2009). Bacterial topoisomerase I as a target for discovery of antibacterial compounds. Nucleic Acids Research, 37, 731–737.
  • Vos, S. M., Tretter, S. M., Schmidt, B. H., & Berger, J. M. (2011). All tangled up: How cells direct, manage and exploit topoisomerase function. Nature Reviews Molecular Cell Biology, 12, 827–841.
  • Wang, J. C. (2002). Cellular roles of DNA topoisomerases: A molecular perspective. Nature Reviews Molecular Cell Biology, 3, 430–440.
  • Wang, J., Cieplak, P., & Kollman, P. A. (2000). How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? Journal of Computational Chemistry, 21, 1049–1074.
  • Wang, Y., & Schlick, T. (2008). Quantum mechanics/molecular mechanics investigation of the chemical reaction in Dpo4 reveals water-dependent pathways and requirements for active site reorganization. Journal of the American Chemical Society, 130, 13240–13250.
  • Wang, L., Yu, X., Hu, P., Broyde, S., & Zhang, Y. (2007). A water-mediated and substrate-assisted catalytic mechanism for Sulfolobus solfataricus DNA polymerase IV. Journal of the American Chemical Society, 129, 4731–4737.
  • West, K. L., Meczes, E. L., Thorn, R., Turnbull, R. M., Marshall, R., & Austin, C. A. (2000). Mutagenesis of E477 or K505 in the B’ domain of human topoisomerase IIβ increases the requirement for magnesium ions during strand passage. Biochemistry, 39, 1223–1233.
  • Yang, W., Lee, J. Y., & Nowotny, M. (2006). Making and breaking nucleic acids: Two-Mg2+-ion catalysis and substrate specificity. Molecular Cell, 22, 5–13.
  • Zhang, Z., Cheng, B., & Tse-Dinh, Y.-C. (2011). Crystal structure of a covalent intermediate in DNA cleavage and rejoining by Escherichia coli DNA topoisomerase I. Proceedings of the National academy of Sciences of the USA, 108, 6939–6944.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.