551
Views
19
CrossRef citations to date
0
Altmetric
Articles

Plasmodium falciparum Hsp70-x: a heat shock protein at the host–parasite interface

, &
Pages 1766-1779 | Received 28 Apr 2013, Accepted 11 Aug 2013, Published online: 13 Sep 2013

References

  • Acharya, P., Pallavi, R., Chandran, S., Chakravarti, H., Middha, S., Acharya, J., … Tatu, U. (2009). A glimpse into the clinical proteome of human malaria parasites Plasmodium falciparum and Plasmodium vivax. Proteomics Clinical Applications, 3, 1314–1325. doi:10.1002/prca.200900090.
  • Akide-Ndunge, O. B., Tambini, E., Giribaldi, G., McMillan, P. J., Müller, S., Arese, P., & Turrini, F. (2009). Co-ordinated stage-dependent enhancement of Plasmodium falciparum antioxidant enzymes and heat shock protein expression in parasites growing in oxidatively stressed or G6PD-deficient red blood cells. Malaria Journal, 8, 113. doi:10.1186/1475-2875-8-113.
  • Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., & Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Research, 25, 3389–3402.
  • Aurrecoechea, C., Brestelli, J., Brunk, B. P., Dommer, J., Fischer, S., Gajria, B., … Wang, H. (2009). PlasmoDB: A functional genomic database for malaria parasites. Nucleic Acids Research, 37, D539–D543. doi:10.1093/nar/gkn814.
  • Banumathy, G., Singh, V., Pavithra, S. R., & Tatu, U. (2003). Heat shock protein 90 function is essential for Plasmodium falciparum growth in human erythrocytes. The Journal of Biological Chemistry, 278, 18336–18345. doi:10.1074/jbc.M211309200.
  • Berjanskii, M. V., Riley, M. I., Xie, A., Semenchenko, V., Folk, W. R., & Doren, S. R. V. (2000). NMR structure of the N-terminal J domain of murine polyomavirus T Antigens. The Journal of Biological Chemistry, 275, 36094–36103. doi:10.1074/jbc.M006572200.
  • Botha, M., Pesce, E.-R., & Blatch, G. L. (2007). The Hsp40 proteins of Plasmodium falciparum and other apicomplexa: Regulating chaperone power in the parasite and the host. The International Journal of Biochemistry & Cell Biology, 39, 1781–1803. doi:10.1016/j.biocel.2007.02.011.
  • Bowie, J. U., Luthy, R., & Eisenburg, D. (1991). A method to identify protein sequences that fold into a known three-dimensional structure. Science, 253, 164–170.
  • Campbell, C. C., & Steketee, R. W. (2011). Malaria in Africa can be eliminated. The American Journal of Tropical Medicine and Hygiene, 85, 584–585. doi:10.4269/ajtmh.2011.11-0529.
  • Chaudhury, S., Lyskov, S., & Gray, J. J. (2010). PyRosetta: A script-based interface for implementing molecular modeling algorithms using Rosetta. Bioinformatics, 26, 689–691. doi:10.1093/bioinformatics/btq007.
  • Chiang, A. N., Valderramos, J.-C., Balachandran, R., Chovatiya, R. J., Mead, B. P., Schneider, C., … Brodsky, J. L. (2009). Select pyrimidinones inhibit the propagation of the malarial parasite, Plasmodium falciparum. Bioorganic & Medicinal Chemistry, 17, 1527–1533. doi:10.1016/j.bmc.2009.01.024.
  • Cockburn, I. L., Pesce, E.-R., Pryzborski, J. M., Davies-Coleman, M. T., Clark, P. G. K., Keyzers, R. A., … Blatch, G. L. (2011). Screening for small molecule modulators of Hsp70 chaperone activity using protein aggregation suppression assays: Inhibition of the plasmodial chaperone PfHsp70-1. Biological Chemistry, 392, 431–438. doi:10.1515/BC.2011.040.
  • de Vries, S. J., van Dijk, M., & Bonvin, A. M. J. J. (2010). The HADDOCK web server for data-driven biomolecular docking. Nature Protocols, 5, 883–897.
  • Dragovic, Z., Broadley, S. A., Shomura, Y., Bracher, A., & Hartl, F. U. (2006). Molecular chaperones of the Hsp110 family act as nucleotide exchange factors of Hsp70s. The EMBO Journal, 25, 2519–2528. doi:10.1038/sj.emboj.7601138.
  • Genevaux, P., Schwager, F., Georgopoulos, C., & Kelley, W. L. (2002). Scanning mutagenesis identifies amino acid residues essential for the in vivo activity of the Escherichia coli DnaJ (Hsp40) J-Domain. Genetics, 162, 1045–1053.
  • Grover, M., Chaubey, S., Ranade, S., & Tatu, U. (2013). Identification of an exported heat shock protein 70 in Plasmodium falciparum. Parasite, 20(2), 1–9. doi:10.1051/parasite/2012002.
  • Hall, T. A. (1999). BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98.
  • Han, W., & Christen, P. (2001). Mutations in the interdomain linker region of DnaK abolish the chaperone action of the DnaK/DnaJ/GrpE system. FEBS Letters, 497, 55–58.
  • Harrison, C. J., Hayer-Hartl, M., Liberto, M. D., Hartl, F., & Kuriyan, J. (1997). Crystal structure of the nucleotide exchange factor GrpE bound to the ATPase domain of the molecular chaperone DnaK. Science, 276, 431–435. doi:10.1126/science.276.5311.431.
  • Hartl, F. U., & Hayer-Hartl, M. (2002). Molecular chaperones in the cytosol: From nascent chain to folded protein. Science, 295, 1852–1858. doi:10.1126/science.1068408
  • Hennessy, F., Boshoff, A., & Blatch, G. L. (2005). Rational mutagenesis of a 40 kDa heat shock protein from Agrobacterium tumefaciens identifies amino acid residues critical to its in vivo function. The International Journal of Biochemistry & Cell Biology, 37, 177–191. doi:10.1016/j.biocel.2004.06.009.
  • Jiang, J., Maes, E. G., Taylor, A. B., Wang, L., Hinck, A. P., Lafer, E. M., & Sousa, R. (2007). Structural basis of J cochaperone binding and regulation of Hsp70. Molecular Cell, 28, 422–433.
  • Jiang, J., Prasad, K., Lafer, E. M., & Sousa, R. (2005). Structural basis of interdomain communication in the Hsc70 chaperone. Molecular Cell, 20, 513–524. doi:10.1016/j.molcel.2005.09.028.
  • Kampinga, H. H., & Craig, E. A. (2010). The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nature Reviews Molecular Cell Biology, 11, 579–592. doi:10.1038/nrm2941.
  • Katoh, K., Misawa, K., Kuma, K., & Miyata, T. (2002). MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research, 30, 3059–3066.
  • Kortemme, T., & Baker, D. (2002). A simple physical model for binding energy hot spots in protein–protein complexes. Proceedings of the National Academy of Sciences of the United States of America, 99, 14116–14121.
  • Kortemme, T., Kim, D. E., & Baker, D. (2004). Computational alanine scanning of protein-protein interfaces. Science’s Signal Transduction Knowledge, Environment, 2004(p12), 1–8. doi:10.1126/stke.2192004pl2
  • Külzer, S., Charnaud, S., Dagan, T., Riedel, J., Mandal, P., Pesce, E. R., … Przyborski, J. M. (2012). Plasmodium falciparum-encoded exported hsp70/hsp40 chaperone/co-chaperone complexes within the host erythrocyte. Cellular Microbiology, 14, 1784–1795. doi:10.1111/j.1462-5822.2012.01840.x.
  • Külzer, S., Rug, M., Brinkmann, K., Cannon, P., Cowman, A., Lingelbach, K., … Przyborski, J. M. (2010). Parasite-encoded Hsp40 proteins define novel mobile structures in the cytosol of the P. falciparum-infected erythrocyte. Cellular Microbiology, 12, 1398–1420. doi:10.1111/j.1462-5822.2010.01477.x
  • Kumar, R., Musiyenko, A., & Barik, S. (2003). The heat shock protein 90 of Plasmodium falciparum and antimalarial activity of its inhibitor, geldanamycin. Malaria Journal, 2, 30. doi:10.1186/1475-2875-2-30.
  • Kun, J., & Muller-Hill, B. (1989). The sequence of a third member of the heat shock protein family in Plasmodium falciparum. Nucleic Acids Research, 17, 5384.
  • Lingelbach, K., & Joiner, K. A. (1998). The parasitophorous vacuole membrane surrounding Plasmodium and Toxoplasma: An unusual compartment in infected cells. Journal of Cell Science, 111, 1467–1475.
  • Matambo, T. S., Odunuga, O. O., Boshoff, A., & Blatch, G. L. (2004). Overproduction, purification, and characterization of the Plasmodium falciparum heat shock protein 70. Protein Expression and Purification, 33, 214–222. doi:10.1016/j.pep.2003.09.010.
  • Mayer, M. P., & Bukau, B. (2005). Hsp70 chaperones: Cellular functions and molecular mechanism. Cellular and Molecular Life Sciences: CMLS, 62, 670–684. doi:10.1007/s00018-004-4464-6.
  • Mayer, M. P., Schröder, H., Rüdiger, S., Paal, K., Laufen, T., & Bukau, B. (2000). Multistep mechanism of substrate binding determines chaperone activity of Hsp70. Nature Structural Biology, 7, 586–593. doi:10.1038/76819.
  • Moro, F., Fernández-Sáiz, V., & Muga, A. (2004). The lid subdomain of DnaK is required for the stabilization of the substrate-binding site. The Journal of Biological Chemistry, 279, 19600–19606. doi:10.1074/jbc.M400921200.
  • Muralidharan, V., Oksman, A., Pal, P., Lindquist, S., & Goldberg, D. E. (2012). Plasmodium falciparum heat shock protein 110 stabilizes the asparagine repeat-rich parasite proteome during malarial fevers. Nature Communications, 3, 1–10. doi:10.1038/ncomms2306.
  • Nicoll, W. S., Botha, M., McNamara, C., Schlange, M., Pesce, E.-R., Boshoff, A., … Blatch, G. L. (2007). Cytosolic and ER J-domains of mammalian and parasitic origin can functionally interact with DnaK. The International Journal of Biochemistry & Cell Biology, 39, 736–751. doi:10.1016/j.biocel.2006.11.006.
  • Njunge, J. M., Ludewig, M. H., Boshoff, A., Pesce, E.-R., & Blatch, G. L. (2013). Hsp70s and J proteins of Plasmodium parasites infecting rodents and primates: Structure, function, clinical relevance, and drug targets. Current Pharmaceutical Design, 19, 387–403.
  • Pasini, E. M., Kirkegaard, M., Mortensen, P., Lutz, H. U., Thomas, A. W., & Mann, M. (2006). In-depth analysis of the membrane and cytosolic proteome of red blood cells. Blood, 108, 791–801. doi:10.1182/blood-2005-11-007799.Supported.
  • Patron, N. J., & Waller, R. F. (2007). Transit peptide diversity and divergence: A global analysis of plastid targeting signals. BioEssays, 29, 1048–1058. doi:10.1002/bies.20638.
  • Pawlowski, M., Gajda, M. J., Matlak, R., & Bujnicki, J. M. (2008). MetaMQAP: A meta-server for the quality assessment of protein models. BMC Bioinformatics, 9, 403. doi:10.1186/1471-2105-9-403.
  • Pei, J., Kim, B.-H., & Grishin, N. V. (2008). PROMALS3D: A tool for multiple protein sequence and structure alignments. Nucleic Acids Research, 36, 2295–2300. doi:10.1093/nar/gkn072.
  • Pellecchia, M., Montgomery, D. L., Stevens, S. Y., Kooi, C. W. V., Feng, H., Gierasch, L. M., & Zuiderweg, E. R. P. (2000). Structural insights into substrate binding by the molecular chaperone DnaK. Nature Structural Biology, 7, 298–303.
  • Pesce, E.-R., Cockburn, I. L., Goble, J. L., Stephens, L. L., & Blatch, G. L. (2010). Malaria heat shock proteins: Drug targets that chaperone other drug targets. Infectious Disorders Drug Targets, 10, 147–157.
  • Ramya, T. N. C., Surolia, N., & Surolia, A. (2006). 15-Deoxyspergualin modulates Plasmodium falciparum heat shock protein function. Biochemical and Biophysical Research Communications, 348, 585–592. doi:10.1016/j.bbrc.2006.07.082.
  • Renner, T., & Waters, E. R. (2007). Comparative genomic analysis of the Hsp70s from five diverse photosynthetic eukaryotes. Cell Stress & Chaperones, 12, 172–185.
  • Sali, A., & Blundell, T. L. (1993). Comparitive protein modelling by satisfaction of spatial restraints. Journal of Biological Chemistry, 234, 779–815.
  • Sargeant, T. J., Marti, M., Caler, E., Carlton, J. M., Simpson, K., Speed, T. P., & Cowman, A. F. (2006). Lineage-specific expansion of proteins exported to erythrocytes in malaria parasites. Genome Biology, 7, R12.1–R12.22. doi:10.1186/gb-2006-7-2-r12.
  • Schlecht, R., Erbse, A. H., Bukau, B., & Mayer, M. P. (2011). Mechanics of Hsp70 chaperones enables differential interaction with client proteins. Nature Structural & Molecular Biology, 18, 345–351. doi:10.1038/nsmb.2006.
  • Shonhai, A. (2010). Plasmodial heat shock proteins: Targets for chemotherapy. FEMS Immunology and Medical Microbiology, 58, 61–74. doi:10.1111/j.1574-695X.2009.00639.x.
  • Shonhai, A., Boshoff, A., & Blatch, G. L. (2005). Plasmodium falciparum heat shock protein 70 is able to suppress the thermosensitivity of an Escherichia coli DnaK mutant strain. Molecular Genetics and Genomics: MGG, 274, 70–78. doi:10.1007/s00438-005-1150-9.
  • Shonhai, A., Boshoff, A., & Blatch, G. L. (2007). The structural and functional diversity of Hsp70 proteins from Plasmodium falciparum. Protein Science, 16, 1803–1818. doi:10.1110/ps.072918107.affinity.
  • Shonhai, A., Botha, M., de Beer, T. A. P., Boshoff, A., & Blatch, G. L. (2008). Structure-function study of a Plasmodium falciparum Hsp70 using three dimensional modelling and in vitro analyses. Protein and Peptide Letters, 15, 1117–1125.
  • Sippl, M. J. (1993). Recognition of errors in the three-dimensional structures of proteins. Proteins, 17, 355–362.
  • Söding, J. (2005). Protein homology detection by HMM-HMM comparison. Bioinformatics, 21, 951–960. doi:10.1093/bioinformatics/bti125.
  • Strub, A., Zufall, N., & Voos, W. (2003). The putative helical lid of the Hsp70 peptide-binding domain is required for efficient preprotein translocation into mitochondria. Journal of Molecular Biology, 334, 1087–1099. doi:10.1016/j.jmb.2003.10.023.
  • Suh, W. C., Burkholder, W. F., Lu, C. Z., Zhao, X., Gottesman, M. E., & Gross, C. A. (1998). Interaction of the Hsp70 molecular chaperone, DnaK, with its cochaperone DnaJ. Proceedings of the National Academy of Sciences of the United States of America, 95, 15223–15228.
  • Tastan Bishop, O., & Kroon, M. (2011). Study of protein complexes via homology modeling, applied to cysteine proteases and their protein inhibitors. Journal of Molecular Modeling, 17, 3163–3172. doi:10.1007/s00894-011-0990-y.
  • Tina, K. G., Bhadra, R., & Srinivasan, N. (2007). PIC: Protein interactions calculator. Nucleic Acids Research, 35(Web Server issue), W473–W476. doi:10.1093/nar/gkm423
  • van Gestel, R. A., van Solinge, W. W., van der Toorn, H. W. P., Rijksen, G., Heck, A. J. R., van Wijk, R., & Slijper, M. (2010). Quantitative erythrocyte membrane proteome analysis with Blue-native/SDS PAGE. Journal of Proteomics, 73, 456–465. doi:10.1016/j.jprot.2009.08.010.
  • van Rossum, G., & de Boer, J. (1991). Interactive testing remote servers using the python programming language. CWI Quarterly, 4, 283–303.
  • von Heijne, G. (1990). The signal peptide. Journal of Membrane Biology, 115, 195–201.
  • Wang, T.-F., Chang, J.-H., & Wang, C. (1993). Identification of the peptide binding domain of hsc7O. The Journal of Biological Chemistry, 268, 26049–26051.
  • Wiederstein, M., & Sippl, M. J. (2007). ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research, 35(Web Server issue), W407–W410. doi:10.1093/nar/gkm290
  • Wiser, M. F., Jennings, G. J., Lockyer, J. M., van Belkum, A., & van Doorn, L. J. (1995). Chaperonin-like repeats in a 34-kDa Plasmodium berghei phosphoprotein. Parasitology Research, 81, 167–169.
  • Zhu, X., Zhao, X., Burkholder, W. F., Gragerov, A., Ogata, C. M., Gottesman, M. E., & Hendrickson, W. A. (1996). Structural analysis of substrate binding by the molecular chaperone DnaK. Science, 272, 1606–1614.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.