220
Views
8
CrossRef citations to date
0
Altmetric
Articles

In vitro and in silico analysis of the Aspergillus nidulans DNA–CreA repressor interactions

, &
Pages 2033-2041 | Received 05 Aug 2013, Accepted 08 Sep 2013, Published online: 15 Oct 2013

References

  • Bailey, C., & Arst, H. N. (1975). Carbon catabolite repression in Aspergillus nidulans. European Journal of Biochemistry, 51, 573–577.
  • Bradford, M. M. (1976). Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.
  • Choo, Y., & Klug, A. (1998). A role in DNA binding for the linker sequences of the first three zinc fingers of TFIIIA. Nucleic Acids Research, 21, 3341–3346.
  • Cubero, B., & Scazzocchio, C. (1994). Two different, adjacent and divergent zinc finger binding sites are necessary for CREA-mediated carbon catabolite repression in the proline gene cluster of Aspergillus nidulans. The EMBO Journal, 13, 407–415.
  • Dowzer, C. E., & Kelly, J. M. (1991). Analysis of the creA gene, a regulator of carbon catabolite repression in Aspergillus nidulans. Molecular and Cellular Biology, 11, 5701–5709.
  • Drysdale, M. R., Kolze, S. E., & Kelly, J. M. (1993). The Aspergillus niger carbon catabolite repressor encoding gene creA. Gene, 130, 241–245.
  • Elrod-Erickson, M., Benson, T., & Pabo, C. (1998). High-resolution structures of variant Zif268-DNA complexes: Implications for understanding zinc finger-DNA recognition. Structure, 6, 451–464.
  • Fairall, L., Schwabe, J., Chapman, L., Finch, J., & Rhodes, D. (1993). The crystal structure of a two zinc-finger peptide reveals an extension to the rules for zinc-finger/DNA recognition. Nature, 366, 483–487.
  • Flipphi, M., van de Vondervoort, P., Ruijter, G., Jaap Visser, J., Arst, H., & Felenbok, B. (2003). Onset of carbon catabolite repression in Aspergillus nidulans. Journal of Biological Chemistry, 278, 11849–11857.
  • Gasteiger, J., & Marsili, M. (1980). Iterative partial equalization of orbital electronegativity - a rapid access to atomic charges. Tetrahedron, 26, 3219–3228.
  • Gómez, D., Cubero, B., Cecchetto, G., & Scazzocchio, C. (2002). PrnA, a Zn2Cys6 activator with a unique DNA recognition mode, requires inducer for in vivo binding. Molecular Microbiology, 44, 585–597.
  • Katoh, H., Ohtani, K., Yamamoto, H., & Akimitsu, K. (2007). Overexpression of a gene encoding a catabolite repression element in Alternaria citri causes severe symptoms of black rot in citrus fruit. Phytopathology, 97, 557–563.
  • Kneale, G. (1994). DNA–Protein interactions. Principles and protocols. Totowa, NJ: Humana Press.
  • Kulmburg, P., Mathieu, M., Dowzer, C., Kelly, J., & Felenbok, B. (1993). Specific binding sites in the alcR and alcA promoters of the ethanol regulon for the CREA repressor mediating carbon catabolite repression in Aspergillus nidulans. Molecular Microbiology, 7, 847–857.
  • Labute, P. (2001). Probabilistic receptor potentials. Journal of Computational Chemistry Group. Retrieved from http://www.chemcomp.com/journal/cstat.htm
  • Laity, J. H., Dyson, H. J., & Wright, P. E. (2000). DNA-induced alpha-helix capping in conserved linker sequences is a determinant of binding affinity in Cys(2)-His(2) zinc fingers. Journal of Molecular Biology, 295, 719–727.
  • Lee, J., Kim, J., & Seok, C. (2010). Cooperatively and specificity of Cys2His2 zinc finger protein-DNA interactions: A molecular dynamics simulation study. Journal of Physical Chemistry B, 114, 7662–7671.
  • Liu, J., & Gary, D. (2008). StormoContext-dependent DNA recognition code for C2H2 zinc-finger transcription factors. Bioinformatics, 24, 1850–1857.
  • Miller, J., McLachlan, A. D., & Klug, A. (1985). Repetitive zinc-binding domains in the protein transcriptionfactor IIIA from Xenopus oocytes. The EMBO Journal, 4, 1609–1614.
  • Miller, J., & Pabo, C. (2001). Rearrangement of side-chains in a Zif268 mutant highlights the complexities of zinc finger-DNA recognition. Journal of Molecular Biology, 313, 309–315.
  • The Molecular Operating Environment, Version 2007.09, Chemical Computing Group Inc. Retrieved from http://www.chemcomp.com
  • Nehlin, J. O., Carlberg, M., & Ronne, H. (1991). Control of yeast GAL genes by MIG1 repressor: a transcriptional cascade in the glucose response. The EMBO Journal, 10, 3373–3377.
  • Orejas, M., MacCabe, A. P., Pérez-GonzálezJ, A., Kumar, S., & Ramón, D. (1999). Carbon catabolite repression of the Aspergillus nidulans xlnA gene. Molecular Microbiology, 31, 177–184.
  • Paulino, M., Esperon, P., Vega, M., Scazzocchio, C., & Tapia, O. (2002). Modelling CreA protein-DNA recognition determinants. A molecular dynamics study of fully charged CreA-DNA model in water. Journal of Molecular Structure (Theochem), 580, 225–242.
  • Pavletich, N., & Pabo, C. (1991). Zinc finger-DNA recognition: Crystal structure of a Zif268–DNA complex at 2.1 A. Science, 252, 809–817.
  • Portnoy, T., Margeot, A., Linke, R., Atanasova, L., Fekete, E., Sándor, E., … Kubicek, C. P. (2011). The CRE1 carbon catabolite repressor of the fungus Trichoderma reesei: A master regulator of carbon assimilation. BioMed Central Genomics, 12(269), 1–12.
  • Roxström, G., Velásquez, I., Paulino, M., & Tapia, O. (1998). DNA structure and fluctuations sensed from a 1.1ns molecular dynamics trajectory of a fully charged Zif268–DNA complex in water. Journal of Biomolecular Structure and Dynamics, 2, 301–312.
  • Ryan, R. F., & Darby, M. K. (1998). The role of Zinc finger linkers in p43 and TFIIIA binding to 5S rRNA and DNA. Nucleic Acids Research, 26, 703–709.
  • Sandeman, R. A., & Hynes, M. J. (1989). Isolation of the facA (acetyl-Coenzyme A synthetase) and acuE (malate synthase) genes of Aspergillus nidulans. Molecular & General Genetics, 218, 87–92.
  • Shroff, R. A., O’Connor, S. M., Hynes, M. J., Lockington, R. A., & Kelly, J. M. (1997). Null alleles of creA, the regulator of carbon catabolite repression in Aspergillus nidulans. Fungal Genetics and Biology, 22, 28–38.
  • Sophianopoulou, V., Suárez, T., Diallinas, G., & Scazzocchio, C. (1993). Operator derepressed mutations in the proline utilisation gene cluster of Aspergillus nidulans. Molecular and General Genetics, 236, 209–213.
  • Sun, J., & Glass, N. L. (2011). Identification of the CRE-1 cellulolytic regulon in Neurospora crassa. PLoS One, 6, e25654.
  • Tamayo, E. N., Villanueva, A., Hasper, A. A., de Graaff, L. H., Ramón, D., & Orejas, M. (2008). CreA mediates repression of the regulatory gene xlnR which controls the production of xylanolytic enzymes in Aspergillus nidulans. Fungal Genetics And Biology, 45, 984–993.
  • Wang, J., Cieplak, P., & Kollman, P. (2000). How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules. Journal of Computational Chemistry, 21, 1049–1074.
  • Weiner, S. J., Kollman, P. A., Nguyen, D. T., & Case, D. A. (1986). An all atom force field for simulations of proteins and nucleic acids. Journal of Computational Chemistry, 7, 230–252.
  • Wolfe, S. A., Nekludova, L., & Pabo, C. (2000). DNA recognition by Cys2His2 zinc fingers proteins. Annual Review of Biophysics and Biomolecular Structure, 29, 183–212.
  • Wuttke, D. S., Foster, M. P., Case, D. A., Gottesfeld, J. M., & Wright, P. E. (1997). Solution structure of the first three zinc fingers of TFIIIA bound to the cognate DNA sequence: Determinants of affinity and sequence specificity. Journal of Molecular Biology, 273, 183–206.
  • Yanover, C., & Bradley, P. (2011). Extensive protein and DNA backbone sampling improves structure-based specificity prediction for C2H2 zinc fingers. Nucleic Acids Research, 39, 4564–4576.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.