164
Views
25
CrossRef citations to date
0
Altmetric
Articles

Effect of sequential deletion of extra N-terminal residues on the structure and stability of yeast iso-1-cytochrome-c

, , , , , , & show all
Pages 2005-2016 | Received 19 Jul 2013, Accepted 23 Sep 2013, Published online: 20 Nov 2013

References

  • Agueci, F., Polticelli, F., Sinibaldi, F., Piro, M. C., Santucci, R., & Fiorucci, L. (2007). Probing the effect of mutations on cytochrome c stability. Protein and Peptide Science, 14, 335–339.
  • Alam Khan, M. K., Das, U., Rahaman, M. H., Hassan, M. I., Srinivasan, A., Singh, T. P., & Ahmad, F. (2009). A single mutation induces molten globule formation and a drastic destabilization of wild-type cytochrome c at pH 6.0. Journal of Biologiacl Inorganic Chemistry, 14, 751–760.
  • Alam Khan, M. K., Rahaman, M. H., Hassan, M. I., Singh, T. P., Moosavi-Movahedi, A. A., & Ahmad, F. (2010). Conformational and thermodynamic characterization of the premolten globule state occurring during unfolding of the molten globule state of cytochrome c. Journal of Biologiacl Inorganic Chemistry, 15, 1319–1329.
  • Berghuis, A. M., & Brayer, G. D. (1992). Oxidation state-dependent conformational changes in cytochrome c. Journal of Molecular Biology, 223, 959–976.
  • Bertini, I., Cavallaro, G., & Rosato, A. (2006). Cytochrome c: Occurrence and functions. Chemical Reviews, 106, 90–115.
  • Bixler, J., Bakker, G., & McLendon, G. (1992). Electrochemical probes of protein folding. Journal of the American Chemical Society, 114, 6938–3939.
  • Blauer, G., Sreerama, N., & Woody, R. W. (1993). Optical activity of hemoproteins in the Soret region. Circular dichroism of the heme undecapeptide of cytochrome c in aqueous solution. Biochemistry, 32, 6674–6679.
  • Cohen, D. S., & Pielak, G. J. (1994). Stability of yeast iso-1-ferricytochrome c as a function of pH and temperature. Protein Science, 3, 1253–1260.
  • Correa, D. H. A., & Ramos, C. H. I. (2009). The use of circular dichroism spectroscopy to study protein folding, form and function. African Journal of Biochemistry Research, 3, 164–173.
  • Cutler, R. L., Pielak, G. J., Mauk, A. G., & Smith, M. (1987). Replacement of cysteine-107 of Saccharomyces cerevisiae iso-1-cytochrome c with threonine: improved stability of the mutant protein. Protein Engineering, 1, 95–99.
  • Das, T. K., Mazumdar, S., & Mitra, S. (1998). Characterization of a partially unfolded structure of cytochrome c induced by sodium dodecyl sulphate and the kinetics of its refolding. European Journal of Biochemistry, 254, 662–670.
  • Davies, A. M., Guillemette, J. G., Smith, M., Greenwood, C., Thurgood, A. G., Mauk, A. G., & Moore, G. R. (1993). Redesign of the interior hydrophilic region of mitochondrial cytochrome c by site-directed mutagenesis. Biochemistry, 32, 5431–5435.
  • DeLano, W. L. (2002). The PyMOL molecular graphics system. San Carlos, CA: Delano Scientific.
  • Dill, K. A., & Shortle, D. (1991). Denatured states of proteins. Annual Review of Biochemistry, 60, 795–825.
  • Dixon, M., Hill, R., & Keilin, D. (1931). The absorption spectrum of the component c of cytochrome. Proceedings of Royal Society of London (pp. 29–34).
  • Emsley, P., & Cowtan, K. (2004). Coot: model-building tools for molecular graphics. Acta Crystallographica Section D: Biological Crystallography, 60, 2126–2132.
  • Gao, Q., Ren, Q., Liou, L. C., Bao, X., & Zhang, Z. (2013). Mitochondrial DNA protects against salt stress-induced cytochrome c-mediated apoptosis in yeast. FEBS Letters, 585, 2507–2512.
  • Goto, Y., Takahashi, N., & Fink, A. L. (1990). Mechanism of acid-induced folding of proteins. Biochemistry, 29, 3480–3488.
  • Greenfield, N., & Fasman, G. D. (1969). Computed circular dichroism spectra for the evaluation of protein conformation. Biochemistry, 8, 4108–4116.
  • Herrmann, L. M., & Bowler, B. E. (1997). Thermal denaturation of iso-1-cytochrome c variants: Comparison with solvent denaturation. Protein Science,6, 657–665.
  • Ho, S. N., Hunt, H. D., Horton, R. M., Pullen, J. K., & Pease, L. R. (1989). Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene, 77, 51–59.
  • Hsu, M. C., & Woody, R. W. (1971). The origin of the heme cotton effects in myoglobin and hemoglobin. Journal of the American Chemical Society, 93, 3515–3525.
  • Jiang, X., & Wang, X. (2004). Cytochrome c-mediated apoptosis. Annual Review of Biochemistry, 73, 87–106.
  • Kelly, S. M., Jess, T. J., & Price, N. C. (2005). How to study proteins by circular dichroism. Biochimica Biophysica Acta, 1751, 119–139.
  • Khan, M. K., Rahaman, H., & Ahmad, F. (2011). Conformation and thermodynamic stability of pre-molten and molten globule states of mammalian cytochromes-c. Metallomics, 3, 327–338.
  • Lett, C. M., Rosu-Myles, M. D., Frey, H. E., & Guillemette, J. G. (1999). Rational design of a more stable yeast iso-1-cytochrome c. Biochimica Biophysica Acta, 1432, 40–48.
  • Liggins, J. R., Sherman, F., Mathews, A. J., & Nall, B. T. (1994). Differential scanning calorimetric study of the thermal unfolding transitions of yeast iso-1 and iso-2 cytochromes c and three composite isozymes. Biochemistry, 33, 9209–9219.
  • Louie, G. V., & Brayer, G. D. (1990). High-resolution refinement of yeast iso-1-cytochrome c and comparisons with other eukaryotic cytochromes c. Journal of Molecular Biology, 214, 527–555.
  • Louie, G. V., Hutcheon, W. L., & Brayer, G. D. (1988). Yeast iso-1-cytochrome c. A 2.8 A resolution three-dimensional structure determination. Journal of Molecular Biology, 199, 295–314.
  • Louis-Jeune, C., Andrade-Navarro, M. A., & Perez-Iratxeta, C. (2011). Prediction of protein secondary structure from circular dichroism using theoretically derived spectra. Proteins, 80, 374–381.
  • Margoliash, E., & Frohwirt, N. (1959). Spectrum of horse-heart cytochrome c. Biochemical Journal, 71, 570–572.
  • Margoliash, E., & Schejter, A. (1966). Cytochrome c. Advances in Protein Chemistry, 21, 113–286.
  • Moore, G. R., & Pettigrew, G. W. (1990). Cytochrome c: Evolution, structural and physiological aspects. New York, NY: Springer-Verlag.
  • Morrisett, J. D., David, J. S., Pownall, H. J., & Gotto, A. M., Jr (1973). Interaction of an apolipoprotein (apoLP-alanine) with phosphatidylcholine. Biochemistry, 12, 1290–1299.
  • Moza, B., Qureshi, S. H., & Ahmad, F. (2003). Equilibrium studies of the effect of difference in sequence homology on the mechanism of denaturation of bovine and horse cytochromes-c. Biochimica Biophysica Acta, 1646, 49–56.
  • Moza, B., Qureshi, S. H., Islam, A., Singh, R., Anjum, F., Moosavi-Movahedi, A. A., & Ahmad, F. (2006). A unique molten globule state occurs during unfolding of cytochrome c by LiClO4 near physiological pH and temperature: Structural and thermodynamic characterization. Biochemistry, 45, 4695–4702.
  • Oobatake, M., & Ooi, T. (1993). Hydration and heat stability effects on protein unfolding. Progress in Biophysics & Molecular Biology, 59, 237–284.
  • Patel, C. N., Lind, M. C., & Pielak, G. J. (2001). Characterization of horse cytochrome c expressed in Escherichia coli. Protein Expression and Purification, 22, 220–224.
  • Pielak, G. J., Oikawa, K., Mauk, A. G., Smith, M., & Kay, C. M. (1986). Elimination of the negative soret cotton effect of cytochrome c by replacement of the invariant phenylalanine using site-directed mutagenesis. Journal of the American Chemical Society, 108, 2724–2727.
  • Pollock, W. B., Rosell, F. I., Twitchett, M. B., Dumont, M. E., & Mauk, A. G. (1998). Bacterial expression of a mitochondrial cytochrome c. Trimethylation of lys72 in yeast iso-1-cytochrome c and the alkaline conformational transition. Biochemistry, 37, 6124–6131.
  • Privalov, P. L., & Khechinashvili, N. N. (1974). A thermodynamic approach to the problem of stabilization of globular protein structure: a calorimetric study. Journal of Molecular Biology, 86, 665–684.
  • Qureshi, S. H., Moza, B., Yadav, S., & Ahmad, F. (2003). Conformational and thermodynamic characterization of the molten globule state occurring during unfolding of cytochromes-c by weak salt denaturants. Biochemistry, 42, 1684–1695.
  • Rahaman, H., Khan, M. K. A., Hassan, M. I., Islam, A., Moosavi-Movahedi, A. A., & Ahmad, F. (2013). Evidence of non-coincidence of normalized sigmoidal curves of two different structural properties for two-state protein folding/unfolding. The Journal of Chemical Thermodynamics, 58, 351–358.
  • Rahaman, H., Khan, K. A., Hassan, I., Wahid, M., Singh, S. B., Singh, T. P., Moosavi-Movahedi, A. A., & Ahmad, F. (2008). Sequence and stability of the goat cytochrome c. Biophysical Chemistry, 138, 23–28.
  • Santucci, R., & Ascoli, F. (1997). The Soret circular dichroism spectrum as a probe for the heme Fe(III)-Met(80) axial bond in horse cytochrome c. Journal of Inorganic Biochemistry, 68, 211–214.
  • Schejter, A., & George, P. (1964). The 695-nm. Band of ferricytochrome c and its relationship to protein conformation. Biochemistry, 3, 1045–1049.
  • Silke Oellerich, H. W., & Hildebrandt, P. (2002). Spectroscopic characterization of nonnative conformational states of cytochrome c. The Journal of Physical Chemistry B, 106, 6566–6580.
  • Stellwagen, E., & Cass, R. (1974). Alkaline isomerization of ferricytochrome c from Euglena gracilis. Biochem Biophys Res Commun, 60, 371–375.
  • Sturtevant, J. M. (1987). Bichemical applications of differential scanning calorimetry. Annual Review of Physical Chemistry, 38, 463–488.
  • Swint, L., & Robertson, A. D. (1993). Thermodynamics of unfolding for turkey ovomucoid third domain: Thermal and chemical denaturation. Protein Science, 2, 2037–2049.
  • Takeda, K., Takahashi, K., & Batra, P. P. (1985). Kinetic aspects of the interaction of horse heart cytochrome c with sodium dodecyl sulfate. Archieves of Biochemistry and Biophysics, 236, 411–417.
  • Tsong, T. Y. (1974). The Trp-59 fluorescence of ferricytochrome c as a sensitive measure of the over-all protein conformation. The Journal of Biological Chemistry, 249, 1988–1990.
  • Zaidi, S., Hassan, M. I., Islam, A., & Ahmad, F. (2013). The role of key residues in structure, function, and stability of cytochrome-c. Cellular and Molecular Life Sciences. doi:10.1007/s00018-013-1341-1

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.