351
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Structural insights into the interactions of xpt riboswitch with novel guanine analogues: a molecular dynamics simulation study

, , , , , & show all
Pages 234-243 | Received 17 Jul 2013, Accepted 27 Nov 2013, Published online: 03 Jan 2014

References

  • Allner, O., Nilsson, L., & Villa, A. (2013). Loop-loop interaction in an adenine-sensing riboswitch: A molecular dynamics study. RNA, 19, 916–926.
  • Banas, P., Walter, N. G., Sponer, J., & Otyepka, M. (2010). Protonation states of the key active site residues and structural dynamics of the glmS riboswitch as revealed by molecular dynamics. Journal of Physical Chemistry B, 114, 8701–8712.
  • Batey, R. T., Gilbert, S. D., & Montange, R. K. (2004). Structure of a natural guanine-responsive riboswitch complexed with the metabolite hypoxanthine. Nature, 432, 411–415.
  • Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., Dinola, A., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81, 3684–3690.
  • Blount, K. F., & Breaker, R. R. (2006). Riboswitches as antibacterial drug targets. Nature Biotechnology, 24, 1558–1564.
  • Breaker, R. R. (2011). Prospects for riboswitch discovery and analysis. Molecular Cell, 43, 867–879.
  • Brenner, M. D., Scanlan, M. S., Nahas, M. K., Ha, T., & Silverman, S. K. (2010). Multivector fluorescence analysis of the xpt guanine riboswitch aptamer domain and the conformational role of guanine. Biochemistry, 49, 1596–1605.
  • Buck, J., Furtig, B., Noeske, J., Wohnert, J., & Schwalbe, H. (2007). Time-resolved NMR methods resolving ligand-induced RNA folding at atomic resolution. Proceedings of the National Academy of Sciences of the United States of America, 104, 15699–15704.
  • Case, D. A., Darden, T. A., Cheatham III, T. E., Simmerling, C. L., Wang, J., Duke R. E., & Luo, R. (2008). AMBER 10. San Francisco, CA: University of California San Francisco Press.
  • Cheatham, T. E., & Kollman, P. A. (1997). Molecular dynamics simulations highlight the structural differences among DNA:DNA, RNA:RNA, and DNA:RNA hybrid duplexes. Journal of the American Chemical Society, 119, 4805–4825.
  • Daldrop, P., Reyes, F. E., Robinson, D. A., Hammond, C. M., Lilley, D. M., Batey, R. T., & Brenk, R. (2011). Novel ligands for a purine riboswitch discovered by RNA-ligand docking. Chemistry & Biology, 18, 324–335.
  • Ditchfield, R., Hehre, W. J., & Pople, J. A. (1971). Self consistent molecular orbital methods.9. An extended Gaussian-type basis for molecular orbital studies of organic molecules. The Journal of Chemical Physics, 54, 724–728.
  • Duan, Y., Wu, C., Chowdhury, S., Lee, M. C., Xiong, G., Zhang, W., & Yang, R. (2003). A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. Journal of Computational Chemistry, 24, 1999–2012.
  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., & Montgomery, J. A. (2004). Gaussian 03. (Version C.02). Wallingsford, CT: Gaussian.
  • Fuchs, R. T., Grundy, F. J., & Henkin, T. M. (2006). The S-MK box is a new SAM-binding RNA for translational regulation of SAM synthetase. Nature Structural & Molecular Biology, 13, 226–233.
  • Hehre, W. J., Ditchfield, R., & Pople, J. A. (1972). Self-consistent molecular orbital methods. xii. Further extensions of gaussian-type basis sets for use in molecular orbital studies of organic molecules. The Journal of Chemical Physics, 56, 2257–2261.
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics & Modelling, 14, 33–38.
  • Jain, N., Zhao, L., Liu, J. D., & Xia, T. (2010). Heterogeneity and dynamics of the ligand recognition mode in purine-sensing riboswitches. Biochemistry, 49, 3703–3714.
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79, 926–935.
  • Kim, J. N., Blount, K. F., Puskarz, I., Lim, J., Link, K. H., & Breaker, R. R. (2009). Design and antimicrobial action of purine analogues that bind guanine riboswitches. ACS Chemical Biology, 4, 915–927.
  • Kumar, V., Endoh, T., Murakami, K., & Sugimoto, N. (2012). Dehydration from conserved stem regions is fundamental for ligand-dependent conformational transition of the adenine-specific riboswitch. Chemical Communications, 48, 9693–9695.
  • Mandal, M., Boese, B., Barrick, J. E., Winkler, W. C., & Breaker, R. R. (2003). Riboswitches control fundamental biochemical pathways in Bacillus subtilis and other bacteria. Cell, 113, 577–586.
  • Mandal, M., & Breaker, R. R. (2004). Adenine riboswitches and gene activation by disruption of a transcription terminator. Nature Structural & Molecular Biology, 11, 29–35.
  • Miller, J. H. (1992). A short course in bacterial genetics. Long Island, NY: Cold Spring Harbor Laboratory Press.
  • Montange, R. K., & Batey, R. T. (2008). Riboswitches: Emerging themes in RNA structure and function. Annual Review of Biophysics, 37, 117–133.
  • Mulhbacher, J., Brouillette, E., Allard, M., Fortier, L.-C., Malouin, F., & Lafontaine, D. A. (2010). Novel riboswitch ligand analogs as selective inhibitors of Guanine-related metabolic pathways. Plos Pathogens, 6, 1–11.
  • Mulhbacher, J., & Lafontaine, D. A. (2007). Ligand recognition determinants of guanine riboswitches. Nucleic Acids Research, 35, 5568–5580.
  • Noeske, J., Buck, J., Furtig, B., Nasiri, H. R., Schwalbe, H., & Wohnert, J. (2007). Interplay of ‘induced fit’ and preorganization in the ligand induced folding of the aptamer domain of the guanine binding riboswitch. Nucleic Acids Research, 35, 572–583.
  • Noeske, J., Richter, C., Grundl, M. A., Nasiri, H. R., Schwalbe, H., & Wohnert, J. (2005). An intermolecular base triple as the basis of ligand specificity and affinity in the guanine- and adenine-sensing riboswitch RNAs. Proceedings of the National Academy of Sciences of the United States of America, 102, 1372–1377.
  • Ren, A. M., Rajashankar, K. R., & Patel, D. J. (2012). Fluoride ion encapsulation by Mg2+ ions and phosphates in a fluoride riboswitch. Nature, 486, 85–85-U1501.
  • Ryckaert, J. P., Ciccotti, G., & Berendsen, H. J. C. (1977). Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. Journal of Computational Physics, 23, 327–341.
  • Schill, M., & Koslowski, T. (2013). Sensing organic molecules by charge transfer through aptamer-target complexes: Theory and simulation. Journal of Physical Chemistry B, 117, 475–483.
  • Serganov, A., & Patel, D. J. (2007). Ribozymes, riboswitches and beyond: Regulation of gene expression without proteins. Nature Reviews Genetics, 8, 776–790.
  • Serganov, A., … Patel, D. J. (2004). Structural basis for discriminative regulation of gene expression by adenine- and guanine-sensing mRNAs. Chemistry & Biology, 11, 1729–1741.
  • Sudarsan, N., Barrick, J. E., & Breaker, R. R. (2003). Metabolite-binding RNA domains are present in the genes of eukaryotes. RNA, 9, 644–647.
  • Tucker, B. J., & Breaker, R. R. (2005). Riboswitches as versatile gene control elements. Current Opinion in Structural Biology, 15, 342–348.
  • Villa, A., Wohnert, J., & Stock, G. (2009). Molecular dynamics simulation study of the binding of purine bases to the aptamer domain of the guanine sensing riboswitch. Nucleic Acids Research, 37, 4774–4786.
  • Watson, P. Y., & Fedor, M. J. (2012). The ydaO motif is an ATP-sensing riboswitch in Bacillus subtilis. Nature Chemical Biology, 8, 963–965.
  • Winkler, W. C. (2005). Riboswitches and the role of noncoding RNAs in bacterial metabolic control. Current Opinion in Chemical Biology, 9, 594–602.
  • Winkler, W. C., & Breaker, R. R. (2005). Regulation of bacterial gene expression by riboswitches. Annual Review of Microbiology, 59, 487–517.
  • Xin, Y., & Hamelberg, D. (2010). Deciphering the role of glucosamine-6-phosphate in the riboswitch action of glmS ribozyme. RNA, 16, 2455–2463.
  • York, D. M., Darden, T. A., & Pedersen, L. G. (1993). The effect of long-range electrostatic interactions in simulations of macromolecular crystals: A comparison of the Ewald and truncated list methods. The Journal of Chemical Physics, 99, 8345–8348.
  • Zaman, G. J., Michiels, P. J., & van Boeckel, C. A. (2003). Targeting RNA: New opportunities to address drugless targets. Drug Discovery Today, 8, 297–306.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.