173
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

High-resolution crystal structure of the recombinant diheme cytochrome c from Shewanella baltica (OS155)

, , &
Pages 395-403 | Received 25 Jul 2013, Accepted 03 Jan 2014, Published online: 21 Feb 2014

References

  • Allen, J. W. A., Daltrop, O., Stevens, J. M., & Ferguson, S. J. (2003). C-type cytochromes: Diverse structures and biogenesis systems pose evolutionary problems. Philosophical Transaction Royal Society Biological Science, 358, 255–266.10.1098/rstb.2002.1192
  • Andersen, H., Christensen, H. E. M., Iversen, G., Nørgaard, A., Scharnagl, C., Thuesen, M. H., & Ulstrup, J. (2001). Cytochrome c4. In A. Messerschmidt, R. Huber, T. Poulos, & K. Wieghardt (Eds.), Handbook of metalloproteins (pp. 100–109). Sussex: Wiley.
  • Andersen, N. H., Nørgaard, A., Jensen, T. J., & Ulstrup, J. (2002). Sequential unfolding of the two-domain protein Pseudomonas stutzeri cytochrome c4. Journal of Inorganic Biochemistry, 88, 316–327.10.1016/S0162-0134(01)00358-0
  • Bansal, M., Kumar, S., & Velavan, R. (2000). HELANAL: A program to characterize helix geometry in proteins. Journal of Biomolecular Structure and Dynamics, 17, 811–819.10.1080/07391102.2000.10506570
  • Battistuzzi, G., Borsari, M., Canters, G. W.de Waal, E., Loschi, L., Warmerdam, G., & Sola, M. (2001). Enthalpic and entropic contributions to the mutational changes in the reduction potential of azurin. Biochemistry, 12, 6707–6712.
  • Battistuzzi, G., Borsari, M., Loschi, L., Menziani, M. C., De Rienzo, F., & Sola, M. (2001). Control of metalloprotein reduction potential: the role of electrostatic and solvation effects probed on plastocyanin mutants. Biochemistry, 29, 6422–30.
  • Collaborative Computational Project, Number 4. (1994). The CCP4 suite: Programs for protein crystallography. Acta Crystallographica D, 50, 760–763.
  • Cooley, R. B., Arp, D. J., & Karplus, P. A. (2010). Evolutionary origin of a secondary structure: π-helices as cryptic but widespread insertional variations of α-helices enhancing protein functionality. Journal of Molecular Biology, 404, 232–246.10.1016/j.jmb.2010.09.034
  • Coutinho, I. B., & Xavier, A. V. (1994). Tetraheme cytochromes. Methods Enzymology, 243, 119–140.10.1016/0076-6879(94)43011-X
  • DeLano, W. L. (2002). The PyMol molecular graphics system. San Carlos, CA: DeLano Scientific LLC. Retrieved from http://www.pymol.org
  • Di Rocco, G., Battistuzzi, G., Bortolotti, A. C., Borsari, M., Ferrari, E., Monari, S., & Sola, M. (2011). Cloning, expression, and physicochemical characterization of a new diheme cytochrome c from Shewanella baltica OS155. Journal of Biological Inorganic Chemistry, 16, 461–471.
  • Dyson, H. J., & Wright, P. E. (2005). Intrinsically unstructured proteins and their functions. Nature Review – Molecular Cell Biology, 6, 197–208.
  • Einsle, O. (2001). Cytochrome c nitrite reductase. In A. Messerschmidt, R. Huber, K. Wieghardt, & T. Poulos (Eds.), Handbook of metalloproteins (pp. 440–453),Vol. 1. New York: John Wiley & Sons.
  • Einsle, O., Stach, P., Messerschmidt, A., Simon, J., Kroger, A., Huber, R., & Kroneck, P. M. H. (2000). Cytochrome c nitrite reductase from Wolinella succinogenes: Structure at 1.6Å resolution, inhibitor binding and heme-packing motifs. Journal of Biological Chemistry, 275, 39608–39616.10.1074/jbc.M006188200
  • Emsley, P., Lohkamp, B., Scott, W., & Cowtan, K. (2010). Features and development of coot. Acta Crystallographica D, 66, 486–501.10.1107/S0907444910007493
  • Evans, P. (1993). Data reduction: Data collection and processing. Proceedings of the CCP4 Study Weekend, 114–123.
  • Fülöp, V., Ridout, C. J., Greenwood, C., & Hajdu, J. (1995). Crystal structure of the di-haem cytochrome c peroxidase from Pseudomonas aeruginosa. Structure, 3, 1225–1233.10.1016/S0969-2126(01)00258-1
  • Garau, G., Geremia, S., & Randaccio, L. (2002). Relationship between hydrogen-bonding network and reduction potential in c-type cytochromes. FEBS Letters, 516, 285–286.10.1016/S0014-5793(02)02531-0
  • Gibson, H. R., Mowat, C. G., Miles, C. S., Li, B. R., Leys, D., Reid, G. A., & Stephen, K. (2006). Structural and functional studies on DHC, the diheme cytochrome c from Rhodobacter sphaeroides, and its interaction with SHP, the sphaeroides heme protein. Biochemistry, 45, 6363–6371.10.1021/bi060288q
  • Heidelberg, J. F., Paulsen, I. T., Nelson, K. E., Gaidos, E. J., Nelson, W. C., Read, T. D., … Fraser, C. M. (2002). Genome sequence of the dissimilatory metal ion-reducing bacterium Shewanella oneidensis. Nature Biotechnology, 20, 1118–1123.10.1038/nbt749
  • Heitmann, D., & Einsle, O. (2005). Structural and biochemical characterization of DHC2, a novel diheme cytochrome c from geobacter sulfurreducens. Biochemistry, 44, 12411–12419.10.1021/bi0509999
  • Hernandez, M. C. R., Basurto, J. C., Sandoval, C. F., Marin-Cruz, J., Torres, E., & Trujillo-Ferrara, J. (2007). Theoretical study of heme derivatives under DFT calculations. Journal of Molecular Structure, THEOCHEM, 804, 81–88.10.1016/j.theochem.2006.08.052
  • Iverson, T. M., Arciero, D. M., Hsu, B. T., Logan, M. S. P., Hooper, A. B., & Rees, D. C. (1998). Heme packing motifs revealed by the crystal structure of the tetra-heme cytochrome c554 from Nitrosomonas europaea. Nature Structural Biology, 5, 1005–1012.10.1038/2975
  • Kadziola, A., & Larsen, S. (1997). Crystal structure of the dihaem cytochrome c4 from Pseudomonas stutzeri determined at 2.2Å resolution. Structure, 5, 203–216.10.1016/S0969-2126(97)00179-2
  • Kumar, S., & Bansal, M. (1996). Structural and sequence characteristics of long alpha-helices in globular proteins. Biophysical Journal, 71, 1574–1586.10.1016/S0006-3495(96)79360-8
  • Lamzin, V. S., Perrakis, A., & Wilson, K. S. (2001). The ARP/wARP suite for automated construction and refinement of protein models. In M. G.Rossmann & E. Arnold (Eds.), International tables for crystallography. Volume F: Crystallography of biological macromolecules (pp. 720–722). Dordrecht: Kluwer Academic.
  • Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK: A program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26, 283–291.10.1107/S0021889892009944
  • Leslie, A. G. W., & Powell, H. R. (2007). Processing diffraction data with mosflm. Evolving Methods for Macromolecular Crystallography, 245, 41–51.10.1007/978-1-4020-6316-9
  • Matthews, B. W. (1968). Solvent content of protein crystals. Journal of Molecular Biology, 33, 491–497.10.1016/0022-2836(68)90205-2
  • Methe, B. A., Nelson, K. E., Eisen, J. A., Paulsen, I. T., Nelson, W., Heidelberg, J. F., … Fraser, C. M. (2003). Genome of Geobacter sulfurreducens: Metal reduction in subsurface environments. Science, 302, 1967–1969.10.1126/science.1088727
  • Monari, S., Battistuzzi, G., Borsari, M., Di Rocco, G., Martini, L., Ranieri, A., & Sola, M. (2009). Heterogeneous electron transfer of a two-centered heme protein: redox and electrocatalytic properties of surface-immobilized cytochrome c4. Journal of Physical Chemistry B, 113, 13645–13653.10.1021/jp906339u
  • Moore, G. R., & Pettigrew, G. W. (1990). Cytochromes C: Evolutionary, structural and physicochemical aspects. Berlin: Springer-Verlag.
  • Mowat, C. G., & Chapman, S. K. (2005). Multi-heme cytochromes: New structures, new chemistry. Dalton Transaction, 21, 3381–3389.10.1039/b505184c
  • Murshudov, G. N., Vagin, A. A., & Dodson, E. J. (1997). Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallographica D, 53, 240–255.10.1107/S0907444996012255
  • Page, C. C., Moser, C. C., Chen, X., & Dutton, P. L. (1999). Natural engineering principles of electron tunnelling in biological oxidation±reduction. Nature, 402, 47–52.
  • Paquete, C. M., Turner, D. L., Louro, R. O., Xavier, A. V., & Caterino, T. (2007). Functional properties of type I and type II cytochromes c(3) from Desulfovibrio africanus. Biochimica Biophysica Acta - Bioenergetics, 1767, 1169–1179.10.1016/j.bbabio.2007.06.005
  • Pettigrew, G. W., & Moore, G. R. (1987). A. Rich (Ed), Cytochromes c: Biological aspects. Springer – Verlag: Berlin.
  • Pitts, K. E., Dobbin, P. S., Reyes-Ramirez, F., Thomson, A. J., Richardson, D. J., & Seward, H. E. (2003). Characterization of the Shewanella oneidensis MR-1 decaheme cytochrome MtrA: Expression in Escherichia coli confers the ability to reduce soluble Fe(III) chelates. Journal of Biological Chemistry, 278, 27758–27765.10.1074/jbc.M302582200
  • Rajapandian, V., & Subramanian, V. (2011). Calculations on the structure and spectral properties of cytochrome c551 using DFT and ONIOM methods. Journal of Physical Chemistry A, 115, 2866–2876.10.1021/jp110983v
  • Rohl, C. A., Scholtz, J. M., York, E. J., Stewart, J. M., & Baldwin, R. L. (1992). Kinetics of amide proton exchange in helical peptides of varying chain lengths. Interpretation by the Lifson-Roig equation. Biochemistry, 11, 1263–9.
  • Sheldrick, G. M., & Schneider, T. R. (2003). SHELXL: High-resolution refinement. Macromolecular Crystallography B - Methods in Enzymology, 277, 319–343.
  • Smith, J. M., Kahraman, A., & Thornton, J. M. (2010). Heme proteins – Diversity in structural characteristics, function, and folding. Proteins, 2349–2368.10.1002/prot.v78:10
  • Tan, M. L., Balabin, I., & Onuchic, J. N. (2004). Dynamics of electron transfer pathways in cytochrome c oxidase. Biophysical Journal, 86, 1813–1819.10.1016/S0006-3495(04)74248-4
  • Tiede, D. M., Choquet, Y., & Breton, J. (1985). Geometry for the primary electron donor and the bacteriopheophytin acceptor in Rhodopseudomonas viridis photosynthetic reaction centers. Biophysical Journal, 47, 443–447.10.1016/S0006-3495(85)83936-9
  • Tokita, Y., Shimura, J., Nakajima, H., Goto, Y., & Watanabe, Y. (2008). Mechanism of intramolecular electron transfer in the photoexcited Zn-substituted cytochrome c: Theoretical and experimental perspective. Journal of American Chemical Society, 130, 5302–5310.10.1021/ja711324t
  • Walker, F. A. (2004). Models of the bis-histidine-ligated electron-transferring cytochromes. Comparative geometric and electronic structure of low-spin ferro- and ferrihemes. Chemical Review, 104, 589–615.10.1021/cr020634j
  • Weaver, T. M. (2000). The p-helix translates structure into function. Protein Science, 9, 201–206.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.