193
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Study of orotidine 5′-monophosphate decarboxylase in complex with the top three OMP, BMP, and PMP ligands by molecular dynamics simulation

, &
Pages 404-417 | Received 06 Apr 2013, Accepted 05 Jan 2014, Published online: 21 Feb 2014

References

  • Acheson, S. A., Bell, J. B., Jones, M. E., & Wolfenden, R. (1990). Orotidine-5′-monophosphate decarboxylase catalysis: kinetic isotope effects and the state of hybridization of a bound transition-state analogue. Biochemistry, 29, 3198–3202.
  • Amyes, T. L., Ming, S. A., Goldman, L. M., Wood, B. M., Desai, B. J., Gerlt, J. A., & Richard, J. P. (2012). Orotidine 5′-monophosphate decarboxylase: Transition state stabilization from remote protein–phosphodianion interactions. Biochemistry, 23, 4630–4632.
  • Amyes, T. L., & Richard, J. P. (2007). Enzymatic catalysis of proton transfer at carbon: Activation of triosephosphate isomerase by phosphite dianion. Biochemistry, 46, 5841–5854.
  • Appleby, T. C., Kinsland, C., Begley, T. P., & Ealick, S. E. (2000). The crystal structure and mechanism of orotidine 5′-monophosphate decarboxylase. Proceedings of the National Academy of Sciences, 97, 2005–2010.
  • Bayly, C. I., Cieplak, P., Cornell, W. D., & Kollman, P. A. (1993). A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: The RESP model. The Journal of Physical Chemistry, 97, 10269–10280.
  • Beak, P., & Siegel, B. (1976). Mechanism of decarboxylation of 1,3-dimethylorotic acid. A model for orotidine 5′-phosphate decarboxylase. Journal of the American Chemical Society, 98, 3601–3606.
  • Bell, J. B., & Jones, M. E. (1991). Purification and characterization of yeast orotidine 5′-monophosphate decarboxylase overexpressed from plasmid PGU2. The Journal Biological Chemistry, 266, 12662–12667.
  • Bello, A. M., Poduch, E., Liu, Y., Wei, L., Crandall, I., Wang, X., Dyanand, C., Kain, K. C., Pai, E. F., & Kotra, L. P. (2008). Structure–activity relationships of C6-uridine derivatives targeting plasmodia orotidine monophosphate decarboxylase. Journal of Medicinal Chemistry, 51, 439–448.
  • Case, D. A., Cheatham, T. E., Darden, T., Gohlke, H., Luo, R., Merz, K. M., Onufriev, A., Simmerling, C., Wang, B., & Woods, R. J. (2005). The Amber biomolecular simulation programs. Journal of Computational Chemistry, 26, 1668–1688.
  • Chan, K. K., Wood, B. M., Fedorov, A. A., Fedorov, E. V., Imker, H. J., Amyes, T. L., Richard, J. P., Almo, S. C., & Gerlt, J. A. (2009). Mechanism of the orotidine 5′-monophosphate decarboxylase-catalyzed reaction: evidence for substrate destabilization. Biochemistry, 48, 5518–5531.
  • Darden, T. Y. D., & Pedersen, L. (1993). Particle mesh Ewald –An N.Log(N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98, 10089–10092.
  • Fersht, A. (1985). Enzyme structure and mechanism. San Francisco, CA: W.H. Freeman.
  • Gero, A. M., & O’Sullivan, W. J. (1990). Purines and pyrimidines in malarial parasites. Blood Cells, 16, 467–484; discussion 485–498.
  • Heinrich, D., Diederichsen, U., & Rudolph, M. G. (2009). Lys314 is a nucleophile in non-classical reactions of orotidine-5′-monophosphate decarboxylase. Chemistry - A European Journal, 15, 6619–6625.
  • Herschlag, D. (1988). The role of induced fit and conformational changes of enzymes in specificity and catalysis. Bioorganic Chemistry, 16, 62–96.
  • Houk, K. N., Lee, J. K., Tantillo, D. J., Bahmanyar, S., & Hietbrink, B. N. (2001). Crystal structures of orotidine monophosphate decarboxylase: does the structure reveal the mechanism of nature’s most proficient enzyme? Chembiochem, 2, 113–118.
  • Hu, H., Boone, A., & Yang, W. (2008). Mechanism of OMP decarboxylation in orotidine 5′-monophosphate decarboxylase. Journal of the American Chemical Society, 130, 14493–14503.
  • Hur, S., & Bruice, T. C. (2002). Molecular dynamic study of orotidine-5′-monophosphate decarboxylase in ground state and in intermediate state: a role of the 203-218 loop dynamics. Proceedings of the National Academy of Sciences, 99, 9668–9673.
  • Iiams, V., Desai, B. J., Fedorov, A. A., Fedorov, E. V., Almo, S. C., & Gerlt, J. A. (2011). Mechanism of the orotidine 5′-monophosphate decarboxylase-catalyzed reaction: importance of residues in the orotate binding site. Biochemistry, 50, 8497–8507.
  • Jencks, W. P. (1975). Binding energy, specificity, and enzymic catalysis: The circe effect. Advances in Enzymology and Related Areas of Molecular Biology, 43, 219–410.
  • Kollman, P. A., Massova, I., Reyes, C., Kuhn, B., Huo, S., Chong, L., Lee, M., Lee, T., Duan, Y., Wang, W., Donini, O., Cieplak, P., Srinivasan, J., Case, D. A., & Cheatham, T. E., 3rd (2000). Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models. Accounts of Chemical Research, 33, 889–897.
  • Lee, T. S., Chong, L. T., Chodera, J. D., & Kollman, P. A. (2001). An alternative explanation for the catalytic proficiency of orotidine 5′-phosphate decarboxylase. Journal of the American Chemical Society, 123, 12837–12848.
  • Lee, J. K., & Houk, K. N. (1997). A proficient enzyme revisited: the predicted mechanism for orotidine monophosphate decarboxylase. Science, 276, 942–945.
  • Levine, H. L., Brody, R. S., & Westheimer, F. H. (1980). Inhibition of orotidine-5′-phosphate decarboxylase by 1-(5′-phospho-beta-d-ribofuranosyl)barbituric acid, 6-azauridine 5’-phosphate, and uridine 5’-phosphate. Biochemistry, 19, 4993–4999.
  • Malabanan, M. M., Amyes, T. L., & Richard, J. P. (2010). A role for flexible loops in enzyme catalysis. Current Opinion in Structural Biology, 20, 702–710.
  • Meza-Avina, M. E., Wei, L., Liu, Y., Poduch, E., Bello, A. M., Mishra, R. K., Pai, E. F., & Kotra, L. P. (2010). Structural determinants for the inhibitory ligands of orotidine-5′-monophosphate decarboxylase. Bioorganic & Medicinal Chemistry, 18, 4032–4041.
  • Miller, B. G., Hassell, A. M., Wolfenden, R., Milburn, M. V., & Short, S. A. (2000). Anatomy of a proficient enzyme: the structure of orotidine 5′-monophosphate decarboxylase in the presence and absence of a potential transition state analog. Proceedings of the National Academy of Sciences, 97, 2011–2016.
  • Miller, B. G., & Wolfenden, R. (2002). Catalytic proficiency: the unusual case of OMP decarboxylase. Annual Review of Biochemistry, 71, 847–885.
  • Morrey, J. D., Smee, D. F., Sidwell, R. W., & Tseng, C. (2002). Identification of active antiviral compounds against a New York isolate of West Nile virus. Antiviral Research, 55, 107–116.
  • Poduch, E., Bello, A. M., Tang, S., Fujihashi, M., Pai, E. F., & Kotra, L. P. (2006). Design of inhibitors of orotidine monophosphate decarboxylase using bioisosteric replacement and determination of inhibition kinetics. Journal of Medicinal Chemistry, 49, 4937–4945.
  • Porter, D. J., & Short, S. A. (2000). Yeast orotidine-5′-phosphate decarboxylase: steady-state and pre-steady-state analysis of the kinetic mechanism of substrate decarboxylation. Biochemistry, 39, 11788–11800.
  • Radzicka, A., & Wolfenden, R. (1995). A proficient enzyme. Science, 267, 90–93.
  • Raugei, S., Cascella, M., & Carloni, P. (2004). A proficient enzyme: insights on the mechanism of orotidine monophosphate decarboxylase from computer simulations. Journal of the American Chemical Society, 126, 15730–15737.
  • Ryckaert, J., Ciccotti, G., & Berendsen, H. (1977). Numerical-Integration of Cartesian equations of motion of a system with constraints – Molecular-dynamics of N-alkanes. Journal of Computational Physics, 23, 327–341.
  • Shan, S. O., & Herschlag, D. (1996). The change in hydrogen bond strength accompanying charge rearrangement: implications for enzymatic catalysis. Proceedings of the National Academy of Sciences, 93, 14474–14479.
  • Shostak, K., & Me, J.. (1992). Orotidylate decarboxylase: insights into the catalytic mechanism from substrate specificity studies. Biochemistry, 31, 12155–12161.
  • Siegbahn, P. E. (2002). Quantum chemical studies of manganese centers in biology. Current Opinion in Chemical Biology, 6, 227–235.
  • Silverman, Richard B., & Groziak, M. P. (1982). Model chemistry for a covalent mechanism of action of orotidine 5′-phosphate decarboxylase. Journal of the American Chemical Society, 104, 6434–6439.
  • Thirumalairajan, S., Mahaney, B., & Bearne, S. L. (2010). Interrogation of the active site of OMP decarboxylase from Escherichia coli with a substrate analogue bearing an anionic group at C6. Chemical Communications, 46, 3158–3160.
  • Warshel, A., Strajbl, M., Villa, J., & Florian, J. (2000). Remarkable rate enhancement of orotidine 5′-monophosphate decarboxylase is due to transition-state stabilization rather than to ground-state destabilization. Biochemistry, 39, 14728–14738.
  • Wise, E., Yew, W. S., Babbitt, P. C., Gerlt, J. A., & Rayment, I. (2002). Homologous (beta/alpha)8-barrel enzymes that catalyze unrelated reactions: orotidine 5′-monophosphate decarboxylase and 3-keto-L-gulonate 6-phosphate decarboxylase. Biochemistry, 41, 3861–3869.
  • Wood, B. M., Amyes, T. L., Fedorov, A. A., Fedorov, E. V., Shabila, A., Almo, S. C., Richard, J. P., & Gerlt, J. A. (2010). Conformational changes in orotidine 5′-monophosphate decarboxylase: “Remote” residues that stabilize the active conformation. Biochemistry, 49, 3514–3516.
  • Wu, N., Mo, Y., Gao, J., & Pai, E. F. (2000). Electrostatic stress in catalysis: structure and mechanism of the enzyme orotidine monophosphate decarboxylase. Proceedings of the National Academy of Sciences, 97, 2017–2022.
  • Yablonski, M. J., Pasek, D. A., Han, B. D., Jones, M. E., & Traut, T. W. (1996). Intrinsic activity and stability of bifunctional human UMP synthase and its two separate catalytic domains, orotate phosphoribosyl transferase and orotidine-5′-phosphate decarboxylase. The Journal of Biological Chemistry, 271, 10704–10708.
  • Zhou, X., Jin, X., Medhekar, R., Chen, X., Dieckmann, T., & Toney, M. D. (2001). Rapid kinetic and isotopic studies on dialkylglycine decarboxylase. Biochemistry, 40, 1367–1377.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.