129
Views
4
CrossRef citations to date
0
Altmetric
Articles

Conservation of inter-residue interactions and prediction of folding rates of domain repeats

, &
Pages 534-551 | Received 20 Sep 2013, Accepted 12 Feb 2014, Published online: 07 Apr 2014

References

  • Adamczak, R., Porollo, A., & Meller, J. (2005). Combining prediction of secondary structure and solvent accessibility in proteins. Proteins: Structure, Function and Bioinformatics, 59, 467–475.10.1002/prot.20441
  • Argos, P. (1987). A sensitive procedure to compare amino acid sequences. Journal of Molecular Biology, 193, 385–396.10.1016/0022-2836(87)90226-9
  • Arviv, O., & Levy, Y. (2012). Folding of multidomain proteins: Biophysical consequences of tethering even in apparently independent folding. Proteins: Structure, Function and Bioinformatics, 80, 2780–2798.10.1002/prot.24161
  • Baker, E. N., & Hubbard, R. E. (1984). Hydrogen bonding in globular proteins. Progress in Biophysics and Molecular Biology, 44, 97–179.10.1016/0079-6107(84)90007-5
  • Barrick, D., Ferreiro, D. U., & Komives, E. A. (2008). Folding landscapes of ankyrin repeat proteins: Experiments meet theory. Current Opinion in Structural Biology, 18, 27–34.10.1016/j.sbi.2007.12.004
  • Batey, S., Nickson, A. A., & Clarke, J. (2008). Studying the folding of multidomain proteins. HFSP Journal, 2, 365–377.10.2976/1.2991513
  • Berman, H., Henrick, K., & Nakamura, H. (2003). Announcing the worldwide Protein Data Bank. Nature Structural Biology, 10, 980.10.1038/nsb1203-980
  • Björklund, Å. K., Ekman, D., & Elofsson, A. (2006). Expansion of protein domain repeats. PLoS Computational Biology, 2, e114.10.1371/journal.pcbi.0020114
  • Björklund, Å. K., Ekman, D., Light, S., Frey-Skött, J., & Elofsson, A. (2005). Domain rearrangements in protein evolution. Journal of Molecular Biology, 353, 911–923.10.1016/j.jmb.2005.08.067
  • Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2003). Applied multiple regression/correlation analysis for the behavioral sciences (3rd ed.). Mahwah, NJ: Lawerence Earbaum Associates.
  • Costantini, S., Colonna, G., & Facchiano, A. M. (2008). ESBRI: A web server for evaluating salt bridges in proteins. Bioinformation, 3, 137–138.10.6026/bioinformation
  • De brevern, A. G., Etchebest, C., and Hazout, S. (2000). Bayesian probabilistic approach for predicting backbone structures in terms of protein blocks. Proteins: Structure, Function and Genetics, 41, 271–287.
  • Epand, R. M., & Scheraga, H. A. (1968). The influence of long-range interactions on the structure of myoglobin. Biochemistry, 7, 2864–2872.10.1021/bi00848a024
  • Ferreiro, D. U., Cho, S. S., Komives, E. A., & Wolynes, P. G. (2005). The energy landscape of modular repeat proteins: Topology determines folding mechanism in the ankyrin family. Journal of Molecular Biology, 354, 679–692.10.1016/j.jmb.2005.09.078
  • Gao, J., & Li, Z. (2008). Inter-residue interactions in protein structures exhibit power-law behavior. Biopolymers, 89, 1174–1178.10.1002/bip.21072
  • Gromiha, M. M., & Selvaraj, S. (1997). Influence of medium and long range interactions in different structural classes of globular proteins. Journal of Biological Physics, 23, 151–162.10.1023/A:1004981409616
  • Gromiha, M. M., & Selvaraj, S. (2001). Comparison between long-range interactions and contact order in determining the folding rate of two-state proteins: Application of long-range order to folding rate prediction. Journal of Molecular Biology, 310, 27–32.10.1006/jmbi.2001.4775
  • Gromiha, M. M., & Selvaraj, S. (2004). Inter-residue interactions in protein folding and stability. Progress in Biophysics and Molecular Biology, 86, 235–277.10.1016/j.pbiomolbio.2003.09.003
  • Hao, M. H., & Scheraga, H. A. (1999). Designing potential energy functions for protein folding. Current Opinion in Structural Biology, 9, 184–188.10.1016/S0959-440X(99)80026-8
  • Harihar, B., & Selvaraj, S. (2009). Refinement of the long-range order parameter in predicting folding rates of two-state proteins. Biopolymers, 91, 928–935.10.1002/bip.v91:11
  • Harihar, B., & Selvaraj, S. (2011). Analysis of rate-limiting long-range contacts in the folding rates of three-state and two-state proteins. Protein & Peptide Letters, 18, 1042–1052.
  • Heger, A., & Holm, L. (2000). Rapid automatic detection and alignment of repeats in protein sequences. Proteins: Structure, Function and Genetics, 41, 224–237.10.1002/(ISSN)1097-0134
  • Hemalatha, G. R., Rao, D. S., & Guruprasad, L. (2007). Identification and analysis of novel amino-acid sequence repeats in Bacillus anthracis str. Ames Proteome Using Computational Tool. Comparative and Functional Genomics, 2007, 47161.
  • Henrick, K., Feng, Z., Bluhm, W. F., Dimitropoulos, D., Doreleijers, J. F., Dutta, S., ... Berman, H. M. (2008). Remediation of the protein data bank archive. Nucleic Acids Research, 36, D426–D433.
  • Itoh, K., & Sasai, M. (2008). Cooperativity, connectivity and folding pathways of multidomain proteins. Proceedings of the National Academy of Sciences USA, 105, 13865–13870.10.1073/pnas.0804512105
  • Jacob, E., Unger, R., & Horovitz, A. (2013). N-terminal domains in two-domain proteins are biased to be shorter and predicted to fold faster than their c-terminal counterparts. Cell Reports, 3, 1051–1056.10.1016/j.celrep.2013.03.032
  • Jernigan, R. L., & Bahar, I. (1996). Structure-derived potentials and protein simulations. Current Opinion in Structural Biology, 6, 195–209.10.1016/S0959-440X(96)80075-3
  • Johnson, W. C., Jr, Zhong, L., & Waterhous, D. C. (1995). Environment as well as sequence determines the secondary structure of proteins. Spectroscopy of Biological Molecules (pp. 87–88). Houten: Springer.
  • Jones, D. D. (1975). Amino acid properties and side-chain orientation in proteins: A cross correlation approach. Journal of Theoretical Biology, 50, 167–183.10.1016/0022-5193(75)90031-4
  • Jospeh, A. P., Agarwal, G., Mahajan, S., Gelly, J. C., Swapna, L. S., Offmann, B., & Cadet, F. (2010). A short survey on protein blocks. Biophysical Reviews, 2, 137–147.
  • Kabsch, W., & Sander, C. (1983). Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features. Biopolymers, 22, 2577–2637.10.1002/(ISSN)1097-0282
  • Kamagata, K., Arai, M., & Kuwajima, K. (2004). Unification of the folding mechanisms of non-two-state and two-state proteins. Journal of Molecular Biology, 339, 951–965.10.1016/j.jmb.2004.04.015
  • Krissinel, E., & Henrick, K. (2004). Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallographica Section D Biological Crystallography, 60, 2256–2268.10.1107/S0907444904026460
  • Kubota, Y., Nishikawa, K., Takahashi, S., & Ooi, T. (1982). Correspondence of homologies in amino acid sequence and tertiary structure of protein molecules. Biochimica et Biophysica Acta (BBA) – Protein Structure and Molecular Enzymology, 701, 242–252.10.1016/0167-4838(82)90120-0
  • Kubota, Y., Takahashi, S., Nishikawa, K., & Ooi, T. (1981). Homology in protein sequences expressed by correlation coefficients. Journal of Theoretical Biology, 91, 347–361.10.1016/0022-5193(81)90237-X
  • Labeit, S., Barlow, D. P., Gautel, M., Gibson, T., Holt, J., Hsieh, C. L., … Trinick, J. (1990). A regular pattern of two types of 100-residue motifs in the sequence of titin. Nature, 345, 273–276.10.1038/345273a0
  • Leclere, L., & Rentzsch, F. (2012). Repeated evolution of identical domain architecture in metazoan netrin domain-containing proteins. Genome Biology and Evolution, 4, 883–899.
  • Liu, S., Zhang, C., Liang, S., & Zhou, Y. (2007). Fold recognition by concurrent use of solvent accessibility and residue depth. Proteins: Structure, Function and Bioinformatics, 68, 636–645.10.1002/prot.21459
  • Manavalan, P., & Ponnuswamy, P. K. (1977). A study of the preferred environment of amino acid residues in globular proteins. Archives of Biochemistry and Biophysics, 184, 476–487.10.1016/0003-9861(77)90457-X
  • Manavalan, P., & Ponnuswamy, P. K. (1978). Hydrophobic character of amino acid residues in globular proteins. Nature, 275, 673–674.10.1038/275673a0
  • Mary, R. D., & Selvaraj, S. (2013). Analysis of sequence repeats of proteins in the PDB. Computational Biology and Chemistry, 47, 156–166.10.1016/j.compbiolchem.2013.09.001
  • Miller, E. J., Fischer, K. F., & Marqusee, S. (2002). Experimental evaluation of topological parameters determining protein-folding rates. Proceedings of the National Academy of Sciences USA, 99, 10359–10363.10.1073/pnas.162219099
  • Miyazawa, S., & Jernigan, R. L. (1985). Estimation of effective interresidue contact energies from protein crystal structures: Quasi-chemical approximation. Macromolecules, 18, 534–552.10.1021/ma00145a039
  • Plaxco, K. W., Simons, K. T., & Baker, D. (1998). Contact order, transition state placement and the refolding rates of single domain proteins. Journal of Molecular Biology, 277, 985–994.10.1006/jmbi.1998.1645
  • Ponting, C. P., & Russell, R. P. (2002). The natural history of protein domains. Annual Review of Biophysics and Biomolecular Structure, 31, 45–71.10.1146/annurev.biophys.31.082901.134314
  • Punta, M., Coggill, P. C., Eberhardt, R. Y., Mistry, J., Tate, J., Boursnell, C., … Finn, R. D. (2012). The Pfam protein families database. Nucleic Acids Research, 40, D290–D301.10.1093/nar/gkr1065
  • Reva, B. A., Finkelstein, A. V., Sanner, M., Olson, A. J., & Skolnick, J. (1997). Recognition of protein structure on coarse lattices with residue-residue energy function. Protein Engineering Design and Selection, 10, 1123–1130.10.1093/protein/10.10.1123
  • Rudolph, R., Siebendritt, R., Nesslaŭer, G., Sharma, A. K., & Jaenicke, R. (1990). Folding of an all-beta protein: Independent domain folding in gamma II-crystallin from calf eye lens. Proceedings of the National Academy of Sciences USA, 87, 4625–4629.10.1073/pnas.87.12.4625
  • Russell, R. B., & Barton, G. J. (1994). Structural features can be uncovered in protein with similar folds. An analysis of side-chain to side-chain contacts secondary structure and accessibility. Journal of Molecular Biology, 244, 332–350.10.1006/jmbi.1994.1733
  • Sabarinathan, R., Basu, R., & Sekar, K. (2012). ProSTRIP: A method to find similar structural repeats in three-dimensional protein structures. Computational Biology and Chemistry, 34, 126–130.
  • Saravanan, K. M., & Selvaraj, S. (2009). Inter-residue interactions based fold recognition method. Proceedings of the International Conference on Physics-Biology Interface (ICPBI), SAHA Institute of Nuclear Physics, Kolkatta.
  • Scott, K. A., Batey, S., Hooton, K. A., & Clarke, J. (2004). The folding of spectrin domains I: Wild-type domains have the same stability but very different kinetic properties. Journal of Molecular Biology, 344, 195–205.10.1016/j.jmb.2004.09.037
  • Scott, K. A., Steward, A., Fowler, S. B., & Clarke, J. (2002). Titin; a multidomain protein that behave as the sum of its parts. Journal of Molecular Biology, 315, 819–829.10.1006/jmbi.2001.5260
  • Selbig, J. (2002). Recent progress in protein secondary structure prediction. In M. Gromiha, & S. Selvaraj (Eds.), Recent research developments in protein folding, stability and design (pp. 93–104). Trivandrum: Research Signpost.
  • Singh, H., Chauhan, J. S., Gromiha, M. M., Open Source Drug Discovery Consortium, and Raghava, G. P. S (2011). ccPDB: Compilation and creation of data sets from Protein Data Bank. Nucleic Acids Research, 40, D486–D495.
  • Sippl, M. J. (1995). Knowledge-based potentials for proteins. Current Opinion in Structural Biology, 5, 229–235.10.1016/0959-440X(95)80081-6
  • Skolnick, J., Jaroszewski, L., Kolinski, A., & Godzik, A. (1997). Derivation and testing of pair potentials for protein folding. When is the quasichemical approximation correct? Protein Science, 6, 676–688.
  • Soper, D. S. (2013). P-value calculator for correlation coefficients [Software]. Retrieved from http://www.danielsoper.com/statcalc
  • Soundararajan, V., Raman, R., Raguram, S., Sasisekharan, V., & Sasisekharan, R. (2010). Atomic interaction network in the core of protein domains and their native folds. PLoS One, 5, e9391.10.1371/journal.pone.0009391
  • Spitzfaden, C., Grant, R. P., Mardon, H. J., & Campbell, I. D. (1997). Module-module interactions in the cell binding region of fibronectin: Stability, flexibility and specificity. Journal of Molecular Biology, 265, 565–579.10.1006/jmbi.1996.0736
  • Tanford, C. (1962). Contribution of hydrophobic interactions to the stability of the globular conformation of proteins. Journal of the American Chemical Society, 84, 4240–4247.10.1021/ja00881a009
  • Tina, K. G., Bhadra, R., & Srinivasan, N. (2007). PIC: Protein interactions calculator. Nucleic Acids Research, 35, W473–W476.10.1093/nar/gkm423
  • Waldburger, C. D., Schildbach, J. F., & Sauer, R. T. (1995). Are buried salt bridges important for protein stability and conformational specificity? Nature Structural Biology, 2, 122–128.10.1038/nsb0295-122
  • Wright, C. F., Teichmann, S. A., Clarke, J., & Dobson, M. (2005). The importance of sequence diversity in the aggregations and evolutions of proteins. Nature, 438, 878–881.10.1038/nature04195
  • Yuan, C., Chen, H., & Kihara, D. (2012). Effective inter-residue contact definitions for accurate protein fold recognition. BMC Bioinformatics, 13, 292.10.1186/1471-2105-13-292
  • Zemla, A. (2003). LGA: A method for finding 3D similarities in protein structures. Nucleic Acids Research, 31, 3370–3374.10.1093/nar/gkg571
  • Zhou, H., & Skolnick, J. (2011). GOAP: A generalized orientation-dependent, all-atom statistical potential for protein structure prediction. Biophysical Journal, 101, 2043–2052.10.1016/j.bpj.2011.09.012
  • Zhou, Y., Vitkup, D., & Karplus, M. (1999). Native proteins are surface-molten solids: Application of the Lindemann criterion for the solid versus liquid state. Journal of Molecular Biology, 285, 1371–1375.10.1006/jmbi.1998.2374
  • Zhou, H., & Zhou, Y. (2002). Folding rate prediction using total contact distance. Biophysical Journal, 82, 458–463.10.1016/S0006-3495(02)75410-6
  • Zhou, H., & Zhou, Y. (2004). Single-body residue-level knowledge-based energy score combined with sequence-profile and secondary structure information for fold recognition. Proteins: Structure, Function and Bioinformatics, 55, 1005–1013.10.1002/prot.20007

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.