287
Views
9
CrossRef citations to date
0
Altmetric
Articles

Analysis of dihedral angle preferences for alanine and glycine residues in alpha and beta transmembrane regions

&
Pages 552-562 | Received 04 Oct 2013, Accepted 13 Feb 2014, Published online: 13 Mar 2014

References

  • Bagos, P. G., Liakopoulos, T. D., & Hamodrakas, S. J. (2005). Evaluation of methods for predicting the topology of β-barrel outer membrane proteins and a consensus prediction method. BMC Bioinformatics, 6, 7.10.1186/1471-2105-6-7
  • Bagos, P. G., Liakopoulos, T. D., Spyropoulos, I. C., & Hamodrakas, S. J. (2004). PRED-TMBB: A web server for predicting the topology of β-barrel outer membrane proteins. Nucleic Acids Research, 32, W400–W404.10.1093/nar/gkh417
  • Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., & Bourne, P. E. (2000). The Protein Data Bank. Nucleic Acids Research, 28, 235–242.10.1093/nar/28.1.235
  • Brocchieri, L., & Karlin, S. (1994). Geometry of interplanar residue contacts in protein structures. Proceedings of the National Academy of Sciences, 91, 9297–9301.10.1073/pnas.91.20.9297
  • Brosig, B., & Langosch, D. (1998). The dimerization motif of the glycophorin – A transmembrane segment in membranes: Importance of glycine residues. Protein Science, 7, 1052–1056.
  • Cantor, C., & Schimmel, P. (2011). In biophysical chemistry part I: The conformation of biological macromolecules. Newyork, NY: W.H. Freeman.
  • Chothia, C., Levitt, M., & Richardson, D. (1981). Helix to helix packing in proteins. Journal of Molecular Biology, 145, 215–250.10.1016/0022-2836(81)90341-7
  • Dayalan, S., Gooneratne, N. D., Bevinakoppa, S., & Schroder, H. (2006). Dihedral angle and secondary structure database of short amino acid fragments. Bioinformation, 1, 78–80.10.6026/bioinformation
  • Deber, C. M., Khan, A. R., Li, Z., Joensson, C., Glibowicka, M., & Wang, J. (1993). Val-->Ala mutations selectively alter helix–helix packing in the transmembrane segment of phage M13 coat protein. Proceedings of the National Academy of Sciences, 90, 11648–11652.10.1073/pnas.90.24.11648
  • Eilers, M., Shekar, S. C., Shieh, T., Smith, S. O., & Fleming, P. J. (2000). Internal packing of helical membrane proteins. Proceedings of the National Academy of Sciences, 97, 5796–5801.10.1073/pnas.97.11.5796
  • Faraggi, E., Xue, B., & Zhou, Y. (2009). Improving the prediction accuracy of residue solvent accessibility and real-value backbone torsion angles of proteins by guided-learning through a two-layer neural network. Proteins: Structure, Function, and Bioinformatics, 74, 847–856.10.1002/prot.v74:4
  • Feig, M. (2008). Is alanine dipeptide a good model for representing the torsional preferences of protein backbones? Journal of Chemical Theory and Computation, 4, 1555–1564.10.1021/ct800153n
  • Gallivan, J. P., & Dougherty, D. A. (1999). Cation-pi interactions in structural biology. Proceedings of the National Academy of Sciences, 96, 9459–9464.10.1073/pnas.96.17.9459
  • Gimpelev, M., Forrest, L. R., Murray, D., & Honig, B. (2004). Helical packing patterns in membrane and soluble proteins. Biophysical Journal, 87, 4075–4086.10.1529/biophysj.104.049288
  • Gnanasekaran, T. V., Peri, S., Arockiasamy, A., & Krishnaswamy, S. (2000). Profiles from structure based sequence alignment of porins can identify beta stranded integral membrane proteins. Bioinformatics, 16, 839–842.10.1093/bioinformatics/16.9.839
  • Gromiha, M. M. (2003). Influence of cation–π interactions in different folding types of membrane proteins. Biophysical Chemistry, 103, 251–258.10.1016/S0301-4622(02)00318-6
  • Gromiha, M. M., Ahmad, S., & Suwa, M. (2004). Neural network based prediction of transmembrane β-strand segments in outer membrane proteins. Journal of Computational Chemistry, 25, 762–767.10.1002/(ISSN)1096-987X
  • Gromiha, M. M., Ahmad, S., & Suwa, M. (2005). TMBETA-NET: Discrimination and prediction of membrane spanning β-strands in outer membrane proteins. Nucleic Acids Research, 33, W164–W167.10.1093/nar/gki367
  • Gromiha, M. M., Pathak, M. C., Saraboji, K., Ortlund, E. A., & Gaucher, E. A. (2013). Hydrophobic environment is a key factor for the stability of thermophilic proteins. Proteins: Structure, Function, and Bioinformatics, 81, 715–721.10.1002/prot.v81.4
  • Gromiha, M. M., & Suwa, M. (2005). A simple statistical method for discriminating outer membrane proteins with better accuracy. Bioinformatics, 21, 961–968.10.1093/bioinformatics/bti126
  • Gunasekaran, K., Ramakrishnan, C., & Balaram, P. (1996). Disallowed Ramachandran conformations of amino acid residues in protein structures. Journal of Molecular Biology, 264, 191–198.10.1006/jmbi.1996.0633
  • Halkides, C. J. (2013). Using molecular models to show steric clash in peptides: An illustration of two disallowed regions in the Ramachandran diagram. Journal of Chemical Education, 90, 760–762.10.1021/ed3001528
  • Hayat, S., & Elofsson, A. (2012). BOCTOPUS: Improved topology prediction of transmembrane β barrel proteins. Bioinformatics, 28, 516–522.10.1093/bioinformatics/btr710
  • Helles, G., & Fonseca, R. (2009). Predicting dihedral angle probability distributions for protein coil residues from primary sequence using neural networks. BMC Bioinformatics, 10, 338.10.1186/1471-2105-10-338
  • Ho, B. K., & Brasseur, R. (2005). The Ramachandran plots of glycine and pre-proline. BMC Structural Biology, 5, 14.10.1186/1472-6807-5-14
  • Ishii, I., Izumi, T., Tsukamoto, H., Umeyama, H., Ui, M., & Shimizu, T. (1997). Alanine exchanges of polar amino acids in the transmembrane domains of a platelet-activating factor receptor generate both constitutively active and inactive mutants. Journal of Biological Chemistry, 272, 7846–7854.
  • Javadpour, M. M., Eilers, M., Groesbeek, M., & Smith, S. O. (1999). Helix packing in polytopic membrane proteins: Role of glycine in transmembrane helix association. Biophysical Journal, 77, 1609–1618.10.1016/S0006-3495(99)77009-8
  • Jayasinghe, S., Hristova, K., & White, S. H. (2001). MPtopo: A database of membrane protein topology. Protein Science, 10, 455–458.10.1110/ps.43501
  • Jha, A. N., & Vishveshwara, S. (2009). Inter-helical interactions in membrane proteins: Analysis based on the local backbone geometry and the side chain interactions. Journal of Biomolecular Structure & Dynamics, 26, 719–729.
  • Jones, D. T. (2007). Improving the accuracy of transmembrane protein topology prediction using evolutionary information. Bioinformatics, 23, 538–544.10.1093/bioinformatics/btl677
  • Katta, A. M., Marikkannu, R., Basaiawmoit, R. V., & Krishnaswamy, S. (2004). Consensus based validation of membrane porins. In Silico Biology, 4, 549–561.
  • Keskin, O., Yuret, D., Gursoy, A., Turkay, M., & Erman, B. (2004). Relationships between amino acid sequence and backbone torsion angle preferences. Proteins: Structure, Function, and Bioinformatics, 55, 992–998.10.1002/prot.20100
  • Klepeis, J. L., & Floudas, C. A. (2003). ASTRO-FOLD: A combinatorial and global optimization framework for ab initio prediction of three-dimensional structures of proteins from the amino acid sequence. Biophysical Journal, 85, 2119–2146.10.1016/S0006-3495(03)74640-2
  • Krogh, A., Larsson, B., von Heijne, G., & Sonnhammer, E. L. (2001). Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. Journal of Molecular Biology, 305, 567–580.10.1006/jmbi.2000.4315
  • Kuang, R., Leslie, C. S., & Yang, A. S. (2004). Protein backbone angle prediction with machine learning approaches. Bioinformatics, 20, 1612–1621.10.1093/bioinformatics/bth136
  • Martelli, P. L., Fariselli, P., Krogh, A., & Casadio, R. (2002). A sequence-profile-based HMM for predicting and discriminating β barrel membrane proteins. Bioinformatics, 18, S46–S53.10.1093/bioinformatics/18.suppl_1.S46
  • McAllister, S. R., & Floudas, C. A. (2010). An improved hybrid global optimization method for protein tertiary structure prediction. Computer Optimization & Applications, 45, 377–413.
  • Mittal, A., Jayaram, B., Shenoy, S., & Bawa, T. S. (2010). A stoichiometry driven universal spatial organization of backbones of folded proteins; Are there chargaff’s rules for protein folding? Journal of Biomolecular Structure & Dynamics, 28, 133–142.
  • Moller, S., Kriventseva, E. V., & Apweiler, R. (2000). A collection of well characterized integral membrane proteins. Bioinformatics, 16, 1159–1160.10.1093/bioinformatics/16.12.1159
  • Ponnuswamy, P. K., & Gromiha, M. M. (1994). On the conformational stability of folded proteins. Journal of Theoretical Biology, 166, 63–74.10.1006/jtbi.1994.1005
  • Racine, J. (2006). Gnuplot 4.0: A portable interactive plotting utility. Journal of Applied Econometrics, 21, 133–141.10.1002/(ISSN)1099-1255
  • Ramachandran, G. N. (1968). Conformation of polypeptides and proteins. Advances in Protein Chemistry, 23, 283–437.10.1016/S0065-3233(08)60402-7
  • Ramachandran, G. N., Ramakrishnan, C., & Sasisekharan, V. (1963). Stereochemistry of polypeptide chain configurations. Journal of Molecular Biology, 7, 95–99.10.1016/S0022-2836(63)80023-6
  • Rose, G. D., Geselowitz, A. R., Lesser, G. J., Lee, R. H., & Zehfus, M. H. (1985). Hydrophobicity of amino acid residues in globular proteins. Science, 229, 834–838.10.1126/science.4023714
  • Rost, B., Fariselli, P., & Casadio, R. (1996). Topology prediction for helical transmembrane proteins at 86% accuracy – Topology prediction at 86% accuracy. Protein Science, 5, 1704–1718.10.1002/pro.v5:8
  • Russ, W. P., & Engelman, D. M. (2000). The GxxxG motif: A framework for transmembrane helix–helix association. Journal of Molecular Biology, 296, 911–919.10.1006/jmbi.1999.3489
  • Saravanan, K. M., Harihar, B., Saranya, N., & Selvaraj, S. (2010). Sequence and structural analysis of two designed proteins with 88% identity adopting different folds. Protein Engineering Design & Selection, 23, 911–918.
  • Saravanan, K. M., & Selvaraj, S. (2012). Search for identical octapeptides in unrelated proteins: Structural plasticity revisited. Biopolymers, 98, 11–26.10.1002/bip.v98.1
  • Sasisekharan, V., & Ponnuswamy, P. K. (1970). Backbone and side-chain conformations of amino acids and amino acid residues in peptides. Biopolymers, 9, 1249–1252.10.1002/(ISSN)1097-0282
  • Savojardo, C., Fariselli, P., & Casadio, R. (2013). BETAWARE: A machine-learning tool to detect and predict transmembrane beta-barrel proteins in prokaryotes. Bioinformatics, 29, 504–505.10.1093/bioinformatics/bts728
  • Shenoy, S. R., & Jayaram, B. (2010). Proteins: Sequence to structure and function – Current status. Current Protein & Peptide Science, 11, 498–514.
  • Singh, H., Chauhan, J. S., Gromiha, M. M., Open Source Drug Discovery Consortium, & Raghava, G. P. S. (2012). ccPDB: Compilation and creation of datasets from Protein Data Bank. Nucleic Acids Research, 40, D486–D489.10.1093/nar/gkr1150
  • Srinivasan, N., Sowdhamini, R., Ramakrishnan, C., & Balaram, P. (1990). Conformations of disulfide bridges in proteins. International Journal of Peptide Protein Research, 36, 147–155.
  • Srividhya, K. V., Alaguraj, V., Poornima, G., Kumar, D., Singh, G. P., Raghavenderan, L., & Krishnaswamy, S. (2007). Identification of prophages in bacterial genomes by dinucleotide relative abundance difference. PLoS One, 2, e1193.10.1371/journal.pone.0001193
  • Thukral, L., Shenoy, S. R., Bhushan, K., & Jayaram, B. (2007). ProRegIn: A regularity index for the selection of native-like tertiary structures of proteins. Journal of Biosciences, 32, 71–81.10.1007/s12038-007-0007-2
  • Ting, D., Wang, G., Shapovalov, M., Mitra, R., Jordan, M. I., & Dunbrack, R. L. (2010). Neighbor-dependent Ramachandran probability distributions of amino acids developed from a hierarchical Dirichlet process model. PLoS Computational Biology, 6, e1000763.10.1371/journal.pcbi.1000763
  • Tusnady, G. E., Dosztanyi, Z., & Simon, I. (2004). Transmembrane proteins in the Protein Data Bank: Identification and classification. Bioinformatics, 20, 2964–2972.10.1093/bioinformatics/bth340
  • Tusnady, G. E., & Simon, I. (2001). The HMMTOP transmembrane topology prediction server. Bioinformatics, 17, 849–850.10.1093/bioinformatics/17.9.849
  • Vasanthi, G., & Krishnaswamy, S. (2002). Dipole moment analysis of membrane proteins suggests role in orientation in the membrane. Indian Journal of Biochemistry & Biophysics, 39, 93–100.
  • Venkatachalam, C. M. (1968). Stereochemical criteria for polypeptides and proteins. V. Conformation of a system of three linked peptide units. Biopolymers, 6, 1425–1436.10.1002/(ISSN)1097-0282
  • Walters, R. F., & DeGrado, W. F. (2006). Helix-packing motifs in membrane proteins. Proceedings of the National Academy of Sciences, 103, 13658–13663.10.1073/pnas.0605878103
  • Walther, D., & Cohen, F. E. (1999). Conformational attractors on the Ramachandran map. Acta Crystallography: Section D, 55, 506–517.
  • Wimley, W. C. (2002). Toward genomic identification of β-barrel membrane proteins: Composition and architecture of known structures. Protein Science, 11, 301–312.
  • Wimley, W. C., & White, S. H. (2000). Designing transmembrane α-helices that insert spontaneously. Biochemistry, 39, 4432–4442.10.1021/bi992746j
  • Zimmermann, O., & Hansmann, U. H. (2008). LOCUSTRA: Accurate prediction of local protein structure using a two-layer support vector machine approach. Journal of Chemical Information & Modelling, 48, 1903–1908.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.