161
Views
10
CrossRef citations to date
0
Altmetric
Articles

Development of pharmacophore similarity-based quantitative activity hypothesis and its applicability domain: applied on a diverse data-set of HIV-1 integrase inhibitors

, , &
Pages 706-722 | Received 05 Jan 2014, Accepted 21 Mar 2014, Published online: 15 Apr 2014

References

  • Barnard, J. M., Downs, G. M., & Willett, P. (1998). Chemical similarity searching. Journal of Chemical Information and Computer Sciences, 38, 983–996.
  • Batten, L., Bohun, C. S., Cheng, K., Doman, T., Drew, J., Edwards, R., … Wood, K. L. (1999). Classification of chemical compound pharmacophore structures. Proceedings of the third PIMS Industrial Problem Solving Workshop, University of Victoria. Retrieved from http://faculty.uoit.ca/bohun/pubs/searle.pdf
  • Bonachéra, F., & Horvath, D. (2008). Fuzzy tricentric pharmacophore fingerprints. 2. Application of topological fuzzy pharmacophore triplets in quantitative structure–activity relationships. Journal of Chemical Information and Modeling, 48, 409–425.10.1021/ci7003237
  • Catalyst. (2000), Catalyst (ver 4.6). San Diego, CA: Accelrys Inc. Retrieved from http://www.accelrys.com
  • Cato, S. J. (2000). Exploring pharmacophores with Chem-X. In O. F. Guner (Ed.), Pharmacophore perception, development, and use in drug design (pp. 107–126). La Jolla, CA: International University Line.
  • Chang, C. C., & Lin, C. J. (2001). LIBSVM: A library for support vector machines. Retrieved from http://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.pdf
  • Clement, O. A., & Mehl, A. T. (2000). HipHop: Pharmacophore based on multiple common-feature alignment. In O. F. Guner (Ed.), Pharmacophore perception, development, and use in drug design (pp. 69–84). La Jolla, CA: International University Line.
  • Cramer, R. D., Patterson, D. E., & Bunce, J. D. (1988). Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. Journal of the American Chemical Society, 110, 5959–5967.10.1021/ja00226a005
  • Dixon, S. L., Smondyrev, A. M., Knoll, E. H., Rao, S. N., Shaw, D. E., & Friesner, R. A. (2006). PHASE: A new engine for pharmacophore perception, 3D QSAR model development, and 3D database screening: 1. Methodology and preliminary results. Journal of Computer-Aided Molecular Design, 20, 647–671.10.1007/s10822-006-9087-6
  • Dror, O., Shulman-Peleg, A., Nussinov, R., & Wolfson, H. J. (2004). Predicting molecular interactions in silico: I. A guide to pharmacophore identification and its applications to drug design. Current Medicinal Chemistry, 11, 71–90.10.2174/0929867043456287
  • Duan, Y., Wu, C., Chowdhury, S., Lee, M. C., Xiong, G., Zhang, W., … Kollman, P. (2003). A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. Journal of Computational Chemistry, 24, 1999–2012.10.1002/(ISSN)1096-987X
  • Gardiner, E. J. (2013). Graph applications in chemoinformatics and structural bioinformatics. In Information Resources Management Association, USA (Ed.), Bioinformatics: Concepts, methodologies, tools, and applications (pp. 1126–1157). Hershey, PA: IGI Global.
  • Goldgur, Y., Craigie, R., Cohen, G. H., Fujiwara, T., Yoshinaga, T., Fujishita, T., … Davies, D. R. (1999). Structure of the HIV-1 integrase catalytic domain complexed with an inhibitor: a platform for antiviral drug design. Proceedings of the National Academy of Sciences, 96, 13040–13043.10.1073/pnas.96.23.13040
  • Guner, O. F. (Ed.). (2000). Pharmacophore perception, development, and use in drug design. La Jolla, CA: International University Line.
  • Haigh, J. A., Pickup, B. T., Grant, J. A., & Nicholls, A. (2005). Small molecule shape-fingerprints. Journal of Chemical Information and Modeling, 45, 673–684.10.1021/ci049651v
  • Hsu, C. W., Chang, C. C., & Lin, C. J. (2003). A practical guide to support vector classification. Taiwan: Department of Computer Science and Information Engineering, National Taiwan University.
  • Kirchmair, J., Laggner, C., Wolber, G., & Langer, T. (2005). Comparative analysis of protein-bound ligand conformations with respect to catalyst’s conformational space subsampling algorithms. Journal of Chemical Information and Modeling, 45, 422–430.10.1021/ci049753l
  • Krieger, E., Darden, T., Nabuurs, S. B., Finkelstein, A., & Vriend, G. (2004). Making optimal use of empirical energy functions: Force-field parameterization in crystal space. Proteins: Structure, Function, and Bioinformatics, 57, 678–683.10.1002/(ISSN)1097-0134
  • Kumar, S. P., Jasrai, Y. T., Pandya, H. A., George, L. B., & Patel, S. K. (2013). Structural insights into the theoretical model of Plasmodium falciparum NADH dehydrogenase and its interaction with artemisinin and derivatives: Towards global health therapeutics. OMICS: A Journal of Integrative Biology, 17, 231–241.10.1089/omi.2012.0129
  • Kumar, S. P., Jasrai, Y. T., Pandya, H. A., & Rawal, R. M. (2013). Pharmacophore-similarity-based QSAR (PS-QSAR) for group-specific biological activity predictions. Journal of Biomolecular Structure and Dynamics. doi:10.1080/07391102.2013.849618.
  • Kumar, S. P., Pandya, H. A., Desai, V. H., & Jasrai, Y. T. (2014). Compound prioritization from inverse docking experiment using receptor-centric and ligand-centric methods: A case study on Plasmodium falciparum Fab enzymes. Journal of Molecular Recognition, 27, 215–229.10.1002/jmr.2353
  • Laggner, C., Schieferer, C., Fiechtner, B., Poles, G., Hoffmann, R. D., Glossmann, H., … Moebius, F. F. (2005). Discovery of high-affinity ligands of sigma1 receptor, ERG2, and emopamil binding protein by pharmacophore modeling and virtual screening. Journal of Medicinal Chemistry, 48, 4754–4764.10.1021/jm049073+
  • Lemmen, C., & Lengauer, T. (2000). Computational methods for the structural alignment of molecules. Journal of Computer-Aided Molecular Design, 14, 215–232.10.1023/A:1008194019144
  • Li, H., Sutter, J., & Hoffmann, R. (2000). HypoGen: An automated system of generating 3D predictive pharmacophore models. In O. F. Guner (Ed.), pharmacophore perception, development, and use in drug design (pp. 171–189). La Jolla, CA: International University Line.
  • Multiple MCS program. (2010). US: Tripod, NIH. Retrieved from http://tripod.nih.gov/ws/mcs/mcs.jnlp
  • Mustata, G. I., Brigob, A., & Briggsa, J. M. (2004). HIV-1 integrase pharmacophore model derived from diverse classes of inhibitors. Bioorganic & Medicinal Chemistry Letters, 14, 1447–1454.
  • Patel, Y., Gillet, V. J., Bravi, G., & Leach, A. R. (2002). A comparison of the pharmacophore identification programs: Catalyst, DISCO and GASP. Journal of Computer-Aided Molecular Design, 16, 653–681.10.1023/A:1021954728347
  • Purohit, R., Rajasekaran, R., Sudandiradoss, C., George Priya Doss, C., Ramanathan, K., & Rao, S. (2008). Studies on flexibility and binding affinity of Asp25 of HIV-1 protease mutants. International Journal of Biological Macromolecules, 42, 386–391.10.1016/j.ijbiomac.2008.01.011
  • Purohit, R., Rajendran, V., & Sethumadhavan, R. (2011). Studies on adaptability of binding residues flap region of TMC-114 resistance HIV-1 protease mutants. Journal of Biomolecular Structure and Dynamics, 29, 137–152.10.1080/07391102.2011.10507379
  • Purohit, R., & Sethumadhavan, R. (2009). Structural basis for the resilience of Darunavir (TMC114) resistance major flap mutations of HIV-1 protease. Interdisciplinary Sciences: Computational Life Sciences, 1, 320–328.10.1007/s12539-009-0043-8
  • Schneidman-Duhovny, D., Dror, O., Inbar, Y., Nussinov, R., & Wolfson, H. J. (2008). PharmaGist: A webserver for ligand-based pharmacophore detection. Nucleic Acids Research, 36, W223–W228.10.1093/nar/gkn187
  • SPSS Inc. (2007). SPSS for Windows (16.0). Chicago, IL: IBM Corporation.
  • Steindl, T., Laggner, C., & Langer, T. (2005). Human rhinovirus 3C protease: Generation of pharmacophore models for peptidic and nonpeptidic inhibitors and their application in virtual screening. Journal of Chemical Information and Modeling, 45, 716–724.10.1021/ci049638a
  • Van Drie, J. H. (2003). Pharmacophore discovery – Lessons learned. Current Pharmaceutical Design, 9, 1649–1664.10.2174/1381612033454568
  • VLifeMDS: Molecular Design Suite. (2010). Pune: VLife Sciences Technologies. Retrieved from www.vlifesciences.com
  • Wermuth, C. G., Ganellin, C. R., Lindberg, P., & Mitscher, L. A. (1998). Glossary of terms used in medicinal chemistry (IUPAC Recommendations 1997). Annual Reports in Medicinal Chemistry, 33, 385–395.10.1016/S0065-7743(08)61101-X
  • Wermuth, C. G., & Langer, T. (1993). Pharmacophore identification. In H. Kubinyi (Ed.), 3D QSAR in drug design: Theory, methods and applications (pp. 117–136). Leiden: ESCOM.
  • Wolber, G., Dornhofer, A. A., & Langer, T. (2006). Efficient overlay of small organic molecules using 3D pharmacophores. Journal of Computer Aided Molecular Design, 20, 773–788.
  • Wolber, G., Seidel, T., Bendix, F., & Langer, T. (2008). Molecule-pharmacophore superpositioning and pattern matching in computational drug design. Drug Discovery Today, 13, 23–29.10.1016/j.drudis.2007.09.007
  • Zhang, S., Golbraikh, A., Oloff, S., Kohn, H., & Tropsha, A. (2006). A novel automated lazy learning QSAR (ALL-QSAR) approach: method development, applications, and virtual screening of chemical databases using validated ALL-QSAR models. Journal of Chemical Information and Modeling, 46, 1984–1995.10.1021/ci060132x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.