181
Views
5
CrossRef citations to date
0
Altmetric
Articles

Structural insight into epothilones antitumor activity based on the conformational preferences and tubulin binding modes of epothilones A and B obtained from molecular dynamics simulations

, &
Pages 789-803 | Received 24 Jan 2014, Accepted 01 Apr 2014, Published online: 28 Apr 2014

References

  • Bas, D. C., Rogers, D. M., & Jensen, J. H. (2008). Very fast prediction and rationalization of pKa values for protein–ligand complexes. Proteins: Structure, Function, and Bioinformatics, 73, 765–783. doi:10.1002/prot.22102
  • Buey, R. M., Diaz, J. F., Andreu, J. M., O’Brate, A., Giannakakou, P., & Nicolaou, K. C. (2004). Interaction of epothilone analogs with the paclitaxel binding site: Relationship between binding affinity, microtubule stabilization, and cytotoxicity. Chemistry & Biology, 11, 225–236. doi:10.1016/j.chembiol.2004.01.014
  • Carlomagno, T., Blommers, M. J. J., Meiler, J., Jahnke, W., Schupp, T., & Petersen, F. (2003). The high-resolution solution structure of epothilone A bound to tubulin: An understanding of the structure–activity relationships for a powerful class of antitumor agents. Angewandte Chemie-International Edition, 42, 2511–2515.
  • Carlomagno, T., Sanchez, V. M., Blommers, M. J. J., & Griesinger, C. (2003). Derivation of dihedral angles from CH–CH dipolar–dipolar cross-correlated relaxation rates: A C–C torsion involving a quaternary carbon atom in epothilone A bound to tubulin. Angewandte Chemie-International Edition, 42, 2515–2517.
  • Erdelyi, M., Navarro-Vazquez, A., Pfeiffer, B., Kuzniewski, C. N., Felser, A., & Widmer, T. (2010). The binding mode of side chain- and C3-modified epothilones to tubulin. ChemMedChem, 5, 911–920. doi:10.1002/cmdc.201000050
  • Erdelyi, M., Pfeiffer, B., Hauenstein, K., Fohrer, J., Gertsch, J., & Altmann, K. H. (2008). Conformational preferences of natural and C3-modified epothilones in aqueous solution. Journal of Medicinal Chemistry, 51, 1469–1473.
  • Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., & Pedersen, L. G. (1995). A smooth particle mesh Ewald method. Journal of Chemical Physics, 103, 8577–8593. doi:10.1063/1.470117
  • Foloppe, N., & MacKerell, A. D. (2000). All-atom empirical force field for nucleic acids: I. Parameter optimization based on small molecule and condensed phase macromolecular target data. Journal of Computational Chemistry, 21, 86–104.
  • Gaussian Inc. (2004). Gaussian 03 (Version C02). Wallingford, CT: Gaussian Inc.
  • Heinz, D. W., Schubert, W. D., & Hofle, G. (2005). Much anticipated – The bioactive conformation of epothilone and its binding to tubulin. Angewandte Chemie-International Edition, 44, 1298–1301. doi:10.1002/anie.200462241
  • Hofle, G. H., Bedorf, N., & Reichenbach, H. (1993). German Patent Disclosure No. DE-B4211055. München: German Patent and Trademark Office.
  • Hofle, G. H., Bedorf, N., Steinmetz, H., Schomburg, D., Gerth, K., & Reichenbach, H. (1996). Epothilone A and B – Novel 16-membered macrolides with cytotoxic activity: Isolation, crystal structure, and conformation in solution. Angewandte Chemie-International Edition in English, 35, 1567–1569.
  • The MathWorks Inc. (2005). MATLAB (Version 7.0). United States of America: The MathWorks Inc.
  • Jimenez, V. A. (2010). Quantum-chemical study on the bioactive conformation of epothilones. Journal of Chemical Information and Modeling, 50, 2176–2190. doi:10.1021/ci1003416
  • Kamel, K., & Kolinski, A. (2011). Computational study of binding of epothilone A to beta-tubulin. Acta Biochimica Polonica, 58, 255–260.
  • Kumar, A., Heise, H., Blommers, M. J. J., Krastel, P., Schmitt, E., & Petersen, F. (2010). Interaction of epothilone B (patupilone) with microtubules as detected by two-dimensional solid-state NMR spectroscopy. Angewandte Chemie-International Edition, 49, 7504–7507. doi:10.1002/anie.201001946
  • Li, H., Robertson, A. D., & Jensen, J. H. (2005). Very fast empirical prediction and rationalization of protein pKa values. Proteins: Structure, Function, and Bioinformatics, 61, 704–721. doi:10.1002/prot.20660
  • Li, X., Ye, L., Wang, X., Shi, W., Qian, X., & Zhu, Y. (2013). Molecular modeling and molecular dynamics simulation studies on the interactions of hydroxylated polychlorinated biphenyls with estrogen receptor-beta. Archives of Environmental Contamination and Toxicology, 65, 357–367. doi:10.1007/s00244-013-9916-2
  • Nagano, S., Li, H. Y., Shimizu, H., Nishida, C., Ogura, H., & de Montellano, P. R. O. (2003). Crystal structures of epothilone D-bound, epothilone B-bound, and substrate-free forms of cytochrome P450epoK. Journal of Biological Chemistry, 278, 44886–44893. doi:10.1074/jbc.M308115200
  • Natarajan, K., & Senapati, S. (2012). Understanding the basis of drug resistance of the mutants of alpha beta-tubulin dimer via molecular dynamics simulations. Plos One, 7. Article id: e42351. doi: 10.1371/journal.pone.0042351
  • Nettles, J. H., Li, H. L., Cornett, B., Krahn, J. M., Snyder, J. P., & Downing, K. H. (2004). The binding mode of epothilone A on alpha, beta-tubulin by electron crystallography. Science, 305, 866–869.
  • Nicolaou, K. C., Roschangar, F., & Vourloumis, D. (1998). Chemical biology of epothilones. Angewandte Chemie-International Edition, 37, 2015–2045.
  • Nicolaou, K. C., Sasmal, P. K., Rassias, G., Reddy, M. V., Altmann, K. H., & Wartmann, M. (2003). Design, synthesis, and biological properties of highly potent epothilone B analogues. Angewandte Chemie-International Edition, 42, 3515–3520. doi:10.1002/anie.200351819
  • Olsson, M. H. M., Søndergaard, C. R., Rostkowski, M., & Jensen, J. H. (2011). PROPKA3: Consistent treatment of internal and surface residues in empirical pKa predictions. Journal of Chemical Theory and Computation, 7, 525–537. doi:10.1021/ct100578z
  • Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., & Villa, E. (2005). Scalable molecular dynamics with NAMD. Journal of Computational Chemistry, 26, 1781–1802. doi:10.1002/jcc.20289
  • Prota, A. E., Bargsten, K., Zurwerra, D., Field, J. J., Diaz, J. F., & Altmann, K. H. (2013). Molecular mechanism of action of microtubule-stabilizing anticancer agents. Science, 339, 587–590. doi:10.1126/science.1230582
  • Reese, M., Sanchez-Pedregal, V. M., Kubicek, K., Meiler, J., Blommers, M. J. J., & Griesinger, C. (2007). Structural basis of the activity of the microtubule-stabilizing agent epothilone A studied by NMR spectroscopy in solution. Angewandte Chemie-International Edition, 46, 1864–1868. doi:10.1002/anie.200604505
  • Shen, M., Zhou, S., Li, Y., Pan, P., Zhang, L., & Hou, T. (2013). Discovery and optimization of triazine derivatives as ROCK1 inhibitors: Molecular docking, molecular dynamics simulations and free energy calculations. Molecular Biosystems, 9, 361–374. doi:10.1039/c2mb25408e
  • Shi, G. J., Wang, Y., Jin, Y., Chi, S. M., Shi, Q., & Ge, M. F. (2012). Structural insight into the mechanism of epothilone A bound to beta-tubulin and its mutants at Arg282Gln and Thr274Ile. Journal of Biomolecular Structure & Dynamics, 30, 559–573. doi:10.1080/07391102.2012.687522
  • Søndergaard, C. R., Olsson, M. H. M., Rostkowski, M., & Jensen, J. H. (2011). Improved treatment of ligands and coupling effects in empirical calculation and rationalization of pKa values. Journal of Chemical Theory and Computation, 7, 2284–2295. doi:10.1021/ct200133y
  • Stanton, C. L., & Houk, K. N. (2008). Benchmarking pKa prediction methods for residues in proteins. Journal of Chemical Theory and Computation, 4, 951–966. doi:10.1021/ct8000014
  • Taylor, R. E., Chen, Y., Beatty, A., Myles, D. C., & Zhou, Y. (2002). Conformation–activity relationships in polyketide natural products: a new perspective on the rational design of epothilone analogues. Journal of the American Chemical Society, 125, 26–27. doi:10.1021/ja028196l
  • Taylor, R. E., Chen, Y., Beatty, A., Myles, D. C., & Zhou, Y. Q. (2003). Conformation–activity relationships in polyketide natural products: A new perspective on the rational design of epothilone analogues. Journal of the American Chemical Society, 125, 26–27. doi:10.1021/ja028196l
  • Taylor, R. E., Chen, Y., Galvin, G. M., & Pabba, P. K. (2004). Conformation–activity relationships in polyketide natural products. Towards the biologically active conformation of epothilone. Organic & Biomolecular Chemistry, 2, 127–132.
  • Taylor, R. E., & Zajicek, J. (1999). Conformational properties of epothilone. Journal of Organic Chemistry, 64, 7224–7228.
  • Wang, M. M., Xia, X. Y., Kim, Y., Hwang, D., Jansen, J. M., & Botta, M. (1999). A unified and quantitative receptor model for the microtubule binding of paclitaxel and epothilone. Organic Letters, 1, 43–46.
  • Zoete, V., Cuendet, M. A., Grosdidier, A., & Michielin, O. (2011). SwissParam: A fast force field generation tool for small organic molecules. Journal of Computational Chemistry, 32, 2359–2368. doi:10.1002/jcc.21816

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.