477
Views
74
CrossRef citations to date
0
Altmetric
Articles

The significant role of the intermolecular CH⋯O/N hydrogen bonds in governing the biologically important pairs of the DNA and RNA modified bases: a comprehensive theoretical investigation

, &
Pages 1624-1652 | Received 09 Aug 2014, Accepted 18 Sep 2014, Published online: 28 Oct 2014

References

  • ADF2012.01. SCM, theoretical chemistry. Amsterdam: Vrije Universiteit. Retrieved from http://www.scm.com
  • Alcolea Palafox, M., Tardajos, G., Guerrero-Martinez, A., Vats, J. K., Joe, H., & Rastogi, V. K. (2010). Relationships observed in the structure and spectra of uracil and its 5-substituted derivatives. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 75, 1261–1269.
  • Alexeeva, I., Dyachenko, N., Nosach, L., Zhovnovataya, V., Rybalko, S., Lozitskaya, R., … & Povnitsa, O. (2001). 6-azacytidine–compound with wide spectrum of antiviral activity. Nucleosides, Nucleotides, Nucleic Acids, 20, 1147–1152.
  • Arunan, E., Desiraju, G. R., Klein, R. A., Sadlej, J., Scheiner, S., Alkorta, I., … Nesbitt, D. J. (2011). Definition of the hydrogen bond. Pure and Applied Chemistry, 83, 1619–1636.
  • Auffinger, P., & Westhof, E. (1997). Rules governing the orientation of the 2’-hydroxyl group in RNA. Journal of Molecular Biology, 274, 54–63.
  • Bader, R. F. W. (1990). Atoms in molecules: A quantum theory. Oxford: Oxford University Press.
  • Badri, Z., Bouzková, K., Foroutan-Nejad, C., & Marek, R. (2014). Origin of the thermodynamic stability of the polymorph IV of crystalline barbituric acid: Evidence from solid-state NMR and electron density analyses. Crystal Growth & Design, 14, 2763–2772.
  • Bandwar, R. P., & Patel, S. S. (2001). Peculiar 2-aminopurine fluorescence monitors the dynamics of open complex formation by bacteriophage T7 RNA polymerase. Journal of Biological Chemistry, 276, 14075–14082.
  • Bandyopadhyay, D., & Bhattacharyya, D. (2006). Estimation of strength in different extra Watson–Crick hydrogen bonds in DNA double helices through quantum chemical studies. Biopolymers, 83, 313–325.
  • Berger, I., Egli, M., & Rich, A. (1996). Inter-strand C-H⋯O hydrogen bonds stabilizing four-stranded intercalated molecules: Stereoelectronic effects of O4′ in cytosine-rich DNA. Proceedings of the National Academy of Sciences of the United States of America, 93, 12116–12121.
  • Bloomfield, V. A., Crothers, D. M., & Tinoco, I. (2000). Nucleic acids: Structures, properties and functions. Sausalito, CA: University Science Books.
  • Bondi, A. J. (1964). Van der Waals volumes and radii. Journal of Physical Chemistry, 68, 441–451.
  • Boys, S. F., & Bernardi, F. (1970). The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Molecular Physics, 19, 553–566.
  • Brandhorst, K., & Grunenberg, J. (2008). How strong is it? The interpretation of force and compliance constants as bond strength descriptors. Chemical Society Reviews, 37, 1558–1567.
  • Brandhorst, K., & Grunenberg, J. (2010). Efficient computation of compliance matrices in redundant internal coordinates from Cartesian Hessians for nonstationary points. Journal of Chemical Physics, 132, 184101–184107.
  • Brandl, M., Lindauer, K., Meyer, M., & Sühnel, J. (1999). C-H⋯O and C-H⋯N interactions in RNA structures. Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta), 103, 77–80.
  • Breindel, A. J., Stuart, R. E., Bock, W. J., Stelter, D. N., Kravec, S. M., & Conwell, E. M. (2013). Hole wave functions and transport with deazaadenines replacing adenines in DNA. Journal of Physical Chemistry B, 117, 3086–3090.
  • Brovarets', O. O., Kolomiets', I. M., & Hovorun, D. M. (2012). Elementary molecular mechanisms of the spontaneous point mutations in DNA: A novel quantum-chemical insight into the classical understanding. In T. Tada (Ed.), Quantum chemistry – Molecules for innovations (pp. 59–102). Rijeka: In Tech Open Access.
  • Brovarets’, O. O. (2013a). Structural and energetic properties of the four configurations of the A·T and G·C DNA base pairs. Ukrains’kyi Biokhimichnyi Zhurnal, 85, 104–110.
  • Brovarets’, O. O. (2013b). Under what conditions does G·C Watson-Crick DNA base pair acquire all four configurations characteristic for A·T Watson-Crick DNA base pair? Ukrains’kyi Biokhimichnyi Zhurnal, 85, 98–103.
  • Brovarets’, O. O., & Hovorun, D. M. (2010a). How stable are the mutagenic tautomers of DNA bases? Biopolymers and Cell, 26, 72–76.
  • Brovarets’, O. O., & Hovorun, D. M. (2010b). Stability of mutagenic tautomers of uracil and its halogen derivatives: The results of quantum-mechanical investigation. Biopolymers and Cell, 26, 295–298.
  • Brovarets’, O. O., & Hovorun, D. M. (2010c). Molecular mechanisms of transitions induced by cytosine analogue: Comparative quantum-chemical study. Ukrains’kyi Biokhimichnyi Zhurnal, 82, 51–56.
  • Brovarets’, O. O., & Hovorun, D. M. (2010d). Quantum-chemical investigation of tautomerization ways of Watson-Crick DNA base pair guanine-cytosine. Ukrains’kyi Biokhimichnyi Zhurnal, 82, 55–60.
  • Brovarets’, O. O., & Hovorun, D. M. (2010e). Quantum-chemical investigation of the elementary molecular mechanisms of pyrimidine-purine transversions. Ukrains’kyi Biokhimichnyi Zhurnal, 82, 57–67.
  • Brovarets’, O. O., & Hovorun, D. M. (2011a). IR Vibrational spectra of H-bonded complexes of adenine, 2-aminopurine and 2-aminopurine+ with cytosine and thymine: Quantum-chemical study. Optics and Spectroscopy, 111, 750–757.
  • Brovarets’, O. O., & Hovorun, D. M. (2011b). Intramolecular tautomerization and the conformational variability of some classical mutagens – cytosine derivatives: Quantum chemical study. Biopolymers and Cell, 27, 221–230.
  • Brovarets’, O. O., & Hovorun, D. M. (2013a). Atomistic understanding of the C·T mismatched DNA base pair tautomerization via the DPT: QM and QTAIM computational approaches. Journal of Computional Chemistry, 34, 2577–2590.
  • Brovarets’, O. O., & Hovorun, D. M. (2013b). Atomistic nature of the DPT tautomerisation of the biologically important C•C* DNA base mispair containing amino and imino tautomers of the cytosine: A QM and QTAIM approach. Physical Chemistry Chemical Physics, 15, 20091–20104.
  • Brovarets’, O. O., & Hovorun, D. M. (2013c). Prototropic tautomerism and basic molecular principles of hypoxanthine mutagenicity: An exhaustive quantum-chemical analysis. Journal of Biomolecular Structure and Dynamics, 31, 913–936.
  • Brovarets’, O. O., & Hovorun, D. M. (2013d). The physicochemical essence of the purine·pyrimidine transition mismatches with Watson-Crick geometry in DNA: A·C* versa A*·C. A QM and QTAIM atomistic understanding. Journal of Biomolecular Structure & Dynamics. doi: 10.1080/07391102.2013.852133
  • Brovarets’, O. O., & Hovorun, D. M. (2013e). The nature of the transition mismatches with Watson-Crick architecture: The G*·T or G·T* DNA base mispair or both? A QM/QTAIM perspective for the biological problem. Journal of Biomolecular Structure & Dynamics. doi:10.1080/07391102.2014.924879
  • Brovarets’, O. O., & Hovorun, D. M. (2014a). Does the G•G*syn DNA mismatch containing canonical and rare tautomers of the guanine tautomerise through the DPT? A QM/QTAIM microstructural study. Molecular Physics. doi:10.1080/00268976.2014.927079
  • Brovarets’, O. O., & Hovorun, D. M. (2014b). How the long G•G* Watson-Crick DNA base mispair comprising keto and enol tautomers of the guanine tautomerises? The results of the QM/QTAIM investigation. Physical Chemistry Chemical Physics, 6, 15886–15899.
  • Brovarets’, O. O., & Hovorun, D. M. (2014c). DPT tautomerisation of the G·Asyn and A*·G*syn DNA mismatches: A QM/QTAIM combined atomistic investigation. Physical Chemistry Chemical Physics, 16, 9074–9085.
  • Brovarets’, O. O., & Hovorun, D. M. (2014d). Can tautomerisation of the A∙T Watson-Crick base pair via double proton transfer provoke point mutations during DNA replication? A comprehensive QM and QTAIM analysis. Journal of Biomolecular Structure and Dynamics, 32, 127–154.
  • Brovarets’, O. O., & Hovorun, D. M. (2014e). Why the tautomerization of the G·C Watson-Crick base pair via the DPT does not cause point mutations during DNA replication? QM and QTAIM comprehensive analysis. Journal of Biomolecular Structure & Dynamics, 32, 1474–1499.
  • Brovarets’, O. O., Yurenko, Y. P., Dubey, I. Ya., & Hovorun, D. M. (2012). Can DNA-binding proteins of replisome tautomerize nucleotide bases? Ab initio model study. Journal of Biomolecular Structure & Dynamics, 29, 1101–1109.
  • Brovarets’, O. O., Yurenko, Y. P., & Hovorun, D. M. (2013). Intermolecular CH...O/N H-bonds in the biologically important pairs of natural nucleobases: A thorough quantum-chemical study. Journal of Biomolecular Structure & Dynamics, 32, 993–1022.
  • Brovarets’, O. O., Zhurakivsky, R. O., & Hovorun, D. M. (2010). Is there adequate ionization mechanism of the spontaneous transitions? Quantum-chemical investigation. Biopolymers and Cell, 26, 398–405.
  • Brovarets’, O. O., Zhurakivsky, R. O., & Hovorun, D. M. (2013a). The physico-chemical mechanism of the tautomerisation via the DPT of the long Hyp*·Hyp Watson-Crick base pair containing rare tautomer: A QM and QTAIM detailed look. Chemical Physics Letters, 578, 126–132.
  • Brovarets’, O. O., Zhurakivsky, R. O., & Hovorun, D. M. (2013b). The physico-chemical “anatomy” of the tautomerisation through the DPT of the biologically important pairs of hypoxanthine with DNA bases: QM and QTAIM perspectives. Journal of Molecular Modeling, 19, 4119–4137.
  • Brovarets’, O. O., Zhurakivsky, R. O., & Hovorun, D. M. (2013c). DPT tautomerization of the long A·A* Watson-Crick base pair formed by the amino and imino tautomers of adenine: Combined QM and QTAIM investigation. Journal of Molecular Modeling, 19, 4223–4237.
  • Brovarets’, O. O., Zhurakivsky, R. O., & Hovorun, D. M. (2014a). DPT tautomerisation of the wobble guanine·thymine DNA base mispair is not mutagenic: QM and QTAIM arguments. Journal of Biomolecular Structure and Dynamics. doi:10.1080/07391102.2014.897259.
  • Brovarets’, O. O., Zhurakivsky, R. O., & Hovorun, D. M. (2014b). Structural, energetic and tautomeric properties of the T·T*/T*·T DNA mismatch involving mutagenic tautomer of thymine: A QM and QTAIM insight. Chemical Physics Letters, 592, 247–255.
  • Brovarets’, O. O., Zhurakivsky, R. O., & Hovorun, D. M. (2014c). A QM/QTAIM microstructural analysis of the tautomerisation via the DPT of the hypoxanthine·adenine nucleobase pair. Molecular Physics, 112, 2005–2016.
  • Brovarets’, O. O., Zhurakivsky, R. O., & Hovorun, D. M. (2014d). Does the tautomeric status of the adenine bases change under the dissociation of the A*•Asyn Topal-Fresco DNA mismatch? A combined QM and QTAIM atomistic insight. Physical Chemistry Chemical Physics, 16, 3715–3725.
  • Buckingham, A. D., Del Bene, J. E., & McDowell, S. A. C. (2008). The hydrogen bond. Chemical Physics Letters, 463, 1–10.
  • Callahan, M. P., Smith, K. E., Cleaves, H. J., II, Ruzicka, J., Stern, J. C., Glavin, D. P., … Dworkin, J. P. (2011). Carbonaceous meteorites contain a wide range of extraterrestrial nucleobases. Proceedings of the National Academy of Sciences of the United States of America, 108, 13995–13998.
  • Castellano, R. K. (2004). Progress toward understanding the nature and function of C-H···O interactions. Current Organic Chemistry, 8, 845–865.
  • Clark, S. J., Harrison, J., Paul, C. L., & Frommer, M. (1994). High sensitivity mapping of methylated cytosines. Nucleic Acids Research, 22, 2990–2997.
  • Cosstick, R., Li, X., Tuli, D. K., Williams, D. M., Connolly, B. A., & Newman, P. C. (1990). Molecular recognition in the minor groove of the DNA helix. Studies on the synthesis of oligonucleotides and polynucleotides containing 3-deaza-2´-deoxyadenosine. Interaction of the oligonucleotides with the restriction endonuclease EcoRV. Nucleic Acids Research, 18, 4771–4778.
  • Coulocheri, S. A., Pigis, D. G., Papavassiliou, K. A., & Papavassiliou, A. G. (2007). Hydrogen bonds in protein-DNA complexes: Where geometry meets plasticity. Biochimie, 89, 1291–1303.
  • Danilov, V. I., Van Mourik, T., Kurita, N., Wakabayashi, H., Tsukamoto, T., & Hovorun, D. M. (2009). On the mechanism of the mutagenic action of 5-bromouracil: A DFT study of uracil and 5-bromouracil in a water cluster. Journal of Physical Chemistry A, 113, 2233–2235.
  • Derewenda, Z. S., Lee, L., & Derewenda, U. (1995). The occurrence of C-H···O hydrogen bonds in proteins. Journal of Molecular Biology, 252, 248–262.
  • Desiraju, G. R., & Steiner, T. (1999). The weak hydrogen bond in structural chemistry and biology. New York, NY: Oxford University Press Inc.
  • Dong, H., Hua, W., & Li, S. (2007). Estimation on the individual hydrogen-bond strength in molecules with multiple hydrogen bonds. Journal of Physical Chemistry A, 111, 2941–2945.
  • Dračínský, M., Jansa, P., Ahonen, K., & Buděšínský, M. (2011). Tautomerism and the protonation/deprotonation of isocytosine in liquid- and solid-states studied by NMR spectroscopy and theoretical calculations. European Journal of Organic Chemistry, 8, 1544–1551.
  • Egli, M., & Gessner, R. V. (1995). Stereoelectronic effects of deoxyribose O4´ on DNA conformation. Proceedings of the National Academy of Sciences of the United States of America, 92, 180–185.
  • El-Sayed, A. A., Tamara Molina, A., Alvarez-Ros, M. C., & Alcolea Palafox, M. (2014). Conformational analysis of the anti-HIV Nikavir prodrug: Comparisons with AZT and thymidine, and establishment of structure-activity relationships/tendencies in other 6´-derivatives. Journal of Biomolecular Structure and Dynamics. doi:10.1080/07391102.2014.909743
  • Espinosa, E., Molins, E., & Lecomte, C. (1998). Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. Chemical Physics Letters, 285, 170–173.
  • Frean, A. M., Alcolea Palafox, M., & Rastogi, V. K. (2013). Effect of the microhydration on the tautomerism in the anticarcinogenic drug 5-fluorouracil and relationships with other 5-haloderivatives. Journal of Molecular Structure, 1054–1055, 32–45.
  • Frieden, E. (1975). Non-covalent interactions: Key to biological flexibility and specificity. Journal of Chemical Education, 52, 754–756.
  • Frisch, M. J., Head-Gordon, M., & Pople, J. A. (1990). Semi-direct algorithms for the MP2 energy and gradient. Chemical Physics Letters, 166, 281–289.
  • Frisch, M. J., Pople, J. A., & Binkley, J. S. (1984). Self-consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets. Journal of Chemical Physics, 80, 3265–3269.
  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., & Pople, J. A. (2010). GAUSSIAN 09 (Revision B.01). Wallingford, CT: Gaussian.
  • Furmanchuk, A., Isayev, O., Gorb, L., Shishkin, O. V., Hovorun, D. M., & Leszczynski, J. (2011). Novel view on the mechanism of water-assisted proton transfer in the DNA bases: Bulk water hydration. Physical Chemistry Chemical Physics, 13, 4311–4317.
  • Ganguly, M., Wang, R. W., Marky, L. A., & Gold, B. (2010). Thermodynamic characterization of DNA with 3-deazaadenine and 3-methyl-3-deazaadenine substitutions: The effect of placing a hydrophobic group in the minor groove of DNA. Journal of Physical Chemistry B, 114, 7656–7661.
  • Gannett, P. M., & Sura, T. P. (1993). Base pairing of 8-oxoguanosine and 8-oxo-2′-deoxyguanosine with 2′-deoxyadenosine, 2′-deoxycytosine, 2′-deoxyguanosine, and thymidine. Chemical Research in Toxicology, 6, 690–700.
  • Ghosh, A., & Bansal, M. (1999). C-H···O hydrogen bonds in minor groove of A-tracts in DNA double helices. Journal of Molecular Biology, 294, 1149–1158.
  • Gilli, G., & Gilli, P. (2009). The nature of the hydrogen bond: Outline of a comprehensive hydrogen bond theory. Oxford: Oxford University Press.
  • Gosein, V., Leung, T. F., Krajden, O., & Miller, G. (2012). Inositol phosphate-induced stabilization of inositol 1,3,4,5,6-pentakisphosphate 2-kinase and its role in substrate specificity. Protein Science, 21, 737–742.
  • Govorun, D. N., Danchuk, V. D., Mishchuk, Ya. R., Kondratyuk, I. V., Radomsky, N. F., & Zheltovsky, N. V. (1992). AM1 calculation of the nucleic acid bases structure and vibrational spectra. Journal of Molecular Structure, 267, 99–103.
  • Grabowski, S. J. (2001). Ab initio calculations on conventional and unconventional hydrogen bonds. Study of the hydrogen bond strength. Journal of Physical Chemistry A, 105, 10739–10746.
  • Grabowski, S. J. (2004). Hydrogen bonding strength – Measures based on geometric and topological parameters. Journal of Physical Organic Chemistry, 17, 18–31.
  • Grabowski, S. J. (2006). Hydrogen bonding – New insights. In J. Leszczynski (Ed.), Series challenges and advances in computational chemistry and physics. New York, NY: Springer.
  • Grabowski, S. J. (2011a). What is the covalency of hydrogen bonding? Chemical Reviews, 111, 2597–2625.
  • Grabowski, S. J. (2011b). Red- and blue-shifted hydrogen bonds: The bent rule from quantum theory of atoms in molecules perspective. Journal of Physical Chemistry A, 115, 12789–12799.
  • Grein, T., Lampe, S., Mersmann, K., Rosemeyer, H., Thomas, H., & Seela, F. (1994). 3-deaza- and 7-deazapurines: Duplex stability of oligonucleotides containing modified adenine or guanine bases. Bioorganic & Medicinal Chemistry Letters, 4, 971–976.
  • Grimme, S., Antony, J., Ehrlich, S., & Krieg, H. (2010). A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. Journal of Chemical Physics, 132, 154104.
  • Grunenberg, J., & Barone, G. (2013). Are compliance constants ill-defined descriptors for weak interactions? RSC Advances, 3, 4757–4762.
  • Grunenberg, J., Barone, G., & Spinello, A. (2014). The right answer for the right electrostatics: Force field methods are able to describe relative energies of DNA guanine quadruplexes. Journal of Chemical Theory and Computation, 10, 2901–2905.
  • Gu, Y., Kar, T., & Scheiner, S. (1999). Fundamental properties of the CH···O interaction: Is it a true hydrogen bond? Journal of the American Chemical Society, 121, 9411–9422.
  • Guschlbauer, W., Duplaa, A. M., Guy, A., Teoule, R., & Fazakerley, G. V. (1991). Structure and in vitro replication of DNA templates containing 7,8-dihydro-8-oxoadenine. Nucleic Acids Research, 19, 1753–1758.
  • Gutowski, M., Van Lenthe, J. H., Verbeek, J., Van Duijneveldt, F. B., & Chalasinski, G. (1986). The basis set superposition error in correlated electronic structure calculations. Chemical Physics Letters, 124, 370–375.
  • Hariharan, P. C., & Pople, J. A. (1973). The influence of polarization functions on molecular orbital hydrogenation energies. Theoretical Chemistry Accounts: Theory, Computation, and Modeling, 28, 213–222.
  • Herdewijn, P. (Ed.). (2008). Modified nucleosides in biochemistry, biotechnology and medicine. Wiley.
  • Hermann, T., & Westhof, E. (1999). Non-Watson–Crick base pairs in RNA-protein recognition. Chemistry & Biology, 6, R335–R343.
  • Hermansson, K. (2002). Blue-shifting hydrogen bonds. Journal of Physical Chemistry A, 106, 4695–4702.
  • Hughes, K. T., Gaines, P. C. W., Karlinsey, J. E., Vinayak, R., & Simon, M. I. (1992). Sequence-specific interaction of the Salmonella Hin recombinase in both major and minor grooves of DNA. EMBO Journal, 11, 2695–2705.
  • Ivanov, A. Yu., Stepanian, S. G., & Adamowicz, L. (2012). Tautomeric transitions of isocytosine isolated in argon and neon matrices induced by UV irradiation. Journal of Molecular Structure, 1025, 92–104.
  • Jacquemin, D., Zúñiga, J., Requena, A., & Céron-Carrasco, J. P. (2014). Assessing the importance of proton transfer reactions in DNA. Accounts of Chemical Research, 47, 2467–2474.
  • Jaenisch, R., & Bird, A. (2003). Epigenetic regulation of gene expression: How the genome integrates intrinsic and environmental signals. Nature Genetics, 33, 245–254.
  • Jean, J. M., & Hall, K. B. (2002). 2-Aminopurine electronic structure and fluorescence properties in DNA. Biochemistry, 41, 13152–13161.
  • Jeffrey, G. A. (1997). An introduction to hydrogen bonding. New York, NY: Oxford University Press.
  • Jeffrey, G. A., & Saenger, W. (1991). Hydrogen bonding in biological structures. Berlin: Springer-Verlag.
  • Jones, P. A., & Baylin, S. B. (2002). The fundamental role of epigenetic events in cancer. Nature Reviews Genetics, 3, 415–428.
  • Jones, C. R., Baruah, P. K., Thompson, A. L., Scheiner, S., & Smith, M. D. (2012). Can a C-H···O interaction be a determinant of conformation? Journal of the American Chemical Society, 134, 12064–12071.
  • Joseph, J., & Jemmis, E. D. (2007). Red-, blue-, or no-shift in hydrogen bonds: A unified explanation. Journal of the American Chemical Society, 129, 4620–4632.
  • Kamiya, H., Miura, H., Murata-Kamiya, N., Ishikawa, H., Sakaguchi, T., Inoue, H., … & Ohtsuka, E. (1995). 8-Hydroxyadenine (7, 8-dihydro-8-Oxoadenine) induces misincorporation in vitro DNA synthesis and mutations in NIH 3T3 cells. Nucleic Acids Research, 23, 2893–2899.
  • Kaplan, I. (2006). Intermolecular interactions: Physical picture, computational methods and model potentials (Wiley series in theoretical chemistry). Chichester: John Wiley.
  • Keith, T. A. (2010). AIMAll (Version 10.07.01). Retrieved from www.aim.tkgristmill.com
  • Koch, U., & Popelier, P. L. A. (1995). Characterization of CH-O hydrogen bonds on the basis of the charge density. Journal of Physical Chemistry, 99, 9747–9754.
  • Kollman, P. A. (1977). Noncovalent interaction. Accounts of Chemical Research, 10, 365–371.
  • Kosenkov, D., Kholod, Y., Gorb, L., Shishkin, O., Hovorun, D. M., Mons, M., & Leszczynski, J. (2009). Ab initio kinetic simulation of gas-phase experiments: Tautomerization of cytosine and guanine. Journal of Physical Chemistry B, 113, 6140–6150.
  • Krishnan, R., Binkley, J. S., Seeger, R., & Pople, J. A. (1980). Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. Journal of Chemical Physics, 72, 650–654.
  • Kwiatkowski, J. S., & Leszczynski, J. (1997). Density functional theory study on molecular structure and vibrational IR spectra of isocytosine. International Journal of Quantum Chemistry, 61, 453–465.
  • Law, J. A., & Jacobsen, S. E. (2010). Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nature Reviews Genetics, 11, 204–220.
  • Lee, B. J., Barch, M., Castner, E. W., Völker, J., & Breslauer, K. J. (2007). Structure and dynamics in DNA looped domains: CAG triplet repeat sequence dynamics probed by 2-aminopurine fluorescence. Biochemistry, 46, 10756–10766.
  • Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B: Condensed Matter and Materials Physics, 37, 785–789.
  • Lehn, J.-M. (1995). Supramolecular chemistry. Weinheim: Verlag-Chemie.
  • Leontis, N. B., & Westhof, E. (1998). Conserved geometrical base-pairing patterns in RNA. Quarterly Reviews of Biophysics, 31, 399–455.
  • Lever, C., Li, X., Cosstick, R., Ebel, S., & Brown, T. (1993). Thermodynamic stability and drug-binding properties of oligodeoxyribonucleotide duplexes containing 3-deazaadenine: Thymine base pairs. Nucleic Acids Research, 21, 1743–1746.
  • Liang, J. X., & Matsika, S. (2011). Pathways for fluorescence quenching in 2-aminopurine π-stacked with pyrimidine nucleobases. Journal of the American Chemical Society, 133, 6799–6808.
  • Lin, X., Wang, H., Wu, Y., Gao, S., & Schaefer, H. F., III (2014). Proton-transfer in hydrogenated guanine–cytosine trimer neutral species, cations, and anions embedded in B-form DNA. Physical Chemistry Chemical Physics, 16, 6717–6725.
  • Lipscomb, L. A., Peek, M. E., Morningstar, M. L., Verghis, S. M., Miller, E. M., Rich, A., … Williams, L. D. (1995). X-ray structure of a DNA decamer containing 7,8-dihydro-8-oxoguanine. Proceedings of the National Academy of Sciences of the United States of America, 92, 719–723.
  • Lozynski, M., Rusinska-Roszak, D., & Mack, H.-G. (1998). Hydrogen bonding and density functional calculations: The B3LYP approach as the shortest way to MP2 results. Journal of Physical Chemistry A, 102, 2899–2903.
  • Madura, I. D., Czerwińska, K., Jakubczyk, M., Pawełko, A., Adamczyk-Woźniak, A., & Sporzyński, A. (2013). Weak C-H···O and dipole–dipole interactions as driving forces in crystals of fluorosubstituted phenylboronic catechol esters. Crystal Growth & Design, 13, 5344–5352.
  • Malins, D. C., & Haimanot, R. (1990). 4,6-Diamino-5-formamidopyrimidine, 8-hydroxyguanine and 8-hydroxyadenine in DNA from neoplastic liver of English sole exposed to carcinogens. Biochemical and Biophysical Research Communications, 173, 614–619.
  • Mandel-Gutfreund, Y., Margalit, H., Jernigan, R. L., & Zhurkin, V. B. (1998). A role for CH···O interactions in protein-DNA recognition. Journal of Molecular Biology, 277, 1129–1140.
  • Mata, I., Alkorta, I., Espinosa, E., & Molins, E. (2011). Relationships between interaction energy, intermolecular distance and electron density properties in hydrogen bonded complexes under external electric fields. Chemical Physics Letters, 507, 185–189.
  • Matsuura, H., Yoshida, H., Hieda, M., Yamanaka, S. Y., Harada, T., Shinya, K., & Ohno, K. (2003). Experimental evidence for intramolecular blue-shifting C-H..O hydrogen bonding by matrix-isolation infrared spectroscopy. Journal of the American Chemical Society, 125, 13910–13911.
  • Matta, C. F. (2010). How dependent are molecular and atomic properties on the electronic structure method? Comparison of Hartree-Fock, DFT, and MP2 on a biologically relevant set of molecules. Journal of Computational Chemistry, 31, 1297–1311.
  • Matta, C. F., Castillo, N., & Boyd, R. J. (2006). Extended weak bonding interactions in DNA: Pi-stacking (base-base), base-backbone, and backbone-backbone interactions. Journal of Physical Chemistry B, 110, 563–578.
  • Mishchuk, Ya. R., Potyagaylo, A. L., & Hovorun, D. M. (2000). Structure and dynamics of 6-azacytidine by MNDO/H quantum-chemical method. Journal of Molecular Structure, 552, 283–289.
  • Nabel, C. S., Manning, S. A., & Kohli, R. M. (2012). The curious chemical biology of cytosine: Deamination, methylation, and oxidation as modulators of genomic potential. ACS Chemical Biology, 7, 20–30.
  • Neidle, S. (2008). Principles of Nucleic Acid Structure. Amsterdam: Elsevier.
  • Nelson, D. L., & Cox, M. M. (2008). Lehninger principles of biochemistry. New York, NY: Freeman and Company.
  • Newman, P. C., Nwosu, V. U., Williams, D. M., Cosstick, R., Seela, F., & Connolly, B. A. (1990). Incorporation of a complete set of deoxyadenosine and thymidine analogs suitable for the study of protein nucleic acid interactions into oligodeoxynucleotides. Application to the EcoRV restriction endonuclease and modification methylase. Biochemistry, 29, 9891–9901.
  • Newman, P. C., Williams, D. M., Cosstick, R., Seela, F., & Connolly, B. A. (1990). Interaction of the EcoRV restriction endonuclease with the deoxyadenosine and thymidine bases in its recognition hexamer d(GATATC). Biochemistry, 29, 9902–9910.
  • Niaraki, M. J., Kondejewski, L. H., Wheaton, L. C., & Hodges, R. S. (2009). Effect of ring size on conformation and biological activity of cyclic cationic antimicrobial peptides. Journal of Medicinal Chemistry, 52, 2090–2097.
  • Nikolaienko, T. Y., Bulavin, L. A., & Hovorun, D. M. (2011). How flexible are DNA constituents? The quantum-mechanical study. Journal of Biomolecular Structure & Dynamics, 29, 563–575.
  • Nikolova, E. N., Kim, E., Wise, A. A., O’Brien, P. J., Andricioaei, I., & Al-Hashimi, H. M. (2011). Transient Hoogsteen base pairs in canonical duplex DNA. Nature, 470, 498–502.
  • Ono, A., Ohdoi, C., Matsuda, A., & Ueda, T. (1992). Nucleosides and nucleotides. 105. DNA bending in d(A)4 – d(T)4 TRACTS containing 3-deazaadenine or 7-deazaadenine substituted for adenine. Nucleosides & Nucleotides, 11, 227–235.
  • Ono, A., & Ueda, T. (1987). Minor-groove-modified oligonucleotides: Synthesis of decadeoxynucleotides containing hypoxanthine, N2-methylguanine and 3-deazaadenine, and their interactions with restriction endonucleases Bgl II, Sau, 3AI, and Mbo I (Nucleosides and Nucleotides Part 75). Nucleic Acids Research, 15, 3059–3072.
  • Palafox, M. A. (2014). Molecular structure differences between the antiviral nucleoside analogue 5-iodo-2′-deoxyuridine and the natural nucleoside 2′-deoxythymidine using MP2 and DFT methods: Conformational analysis, crystal simulations, DNA pairs and possible behavior. Journal of Biomolecular Structure & Dynamics, 32, 831–851.
  • Panigrahi, S. K., & Desiraju, G. R. (2007). Strong and weak hydrogen bonds in drug-DNA complexes: A statistical analysis. Journal of Biosciences, 32, 677–691.
  • Parr, R. G., & Yang, W. (1989). Density-functional theory of atoms and molecules. Oxford: Oxford University Press.
  • Pauling, L. (1960). The nature of the chemical bond and the structure of molecules and crystals (3rd ed.). Ithaca, NY: Cornell University Press.
  • Pitsikas, P., Patapas, J. M., & Cupples, C. G. (2004). Mechanism of 2-aminopurine-stimulated mutagenesis in Escherichia coli. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 550, 25–32.
  • Platonov, M. O., Samijlenko, S. P., Sudakov, O. O., Kondratyuk, I. V., & Hovorun, D. M. (2005). To what extent can methyl derivatives be regarded as stabilized tautomers of xanthine? Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy, 62, 112–114.
  • Ponomareva, A. G., Yurenko, Ye. P., Zhurakivsky, R. O., van Mourik, T., & Hovorun, D. M. (2012). Complete conformational space of the potential HIV-1 reverse transcriptase inhibitors d4U and d4C. A quantum chemical study. Physical Chemistry Chemical Physics, 14, 6787–6795.
  • Ponomareva, A. G., Yurenko, Y. P., Zhurakivsky, R. O., van Mourik, T., & Hovorun, D. M. (2014). Structural and energetic properties of the potential HIV-1 reverse transcriptase inhibitors d4A and d4G: A comprehensive theoretical investigation. Journal of Biomolecular Structure & Dynamics, 32, 730–740.
  • Ronen, A. (1979). 2-Aminopurine. Mutation Research, 75, 1–47.
  • Saenger, W. (1984). Principles of nucleic acid structure. New York, NY: Springer-Verlag.
  • Samijlenko, S. P., Alexeeva, I. V., Palchykivs’ka, L. H., Kondratyuk, I. V., Stepanyugin, A. V., Shalamay, A. S., & Hovorun, D. M. (1999a). Structural peculiarities of 6-azacytosine and its derivatives imply intramolecular H-bonds. Journal of Molecular Structure, 484, 31–38.
  • Samijlenko, S. P., Alexeeva, I. V., Palchykivs’ka, L. H., Kondratyuk, I. V., Stepanyugin, A. V., Shalamay, A. S., & Hovorun, D. M. (1999b). 1H NMR investigation on 6-azacytidine and its derivatives. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 55, 1133–1141.
  • Samijlenko, S. P., Krechkivska, O. M., Kosach, D. A., & Hovorun, D. M. (2004). Transitions to high tautomeric states can be induced in adenine by interactions with carboxylate and sodium ions: DFT calculation data. Journal of Molecular Structure, 708, 97–104.
  • Samijlenko, S. P., Yurenko, Y. P., Stepanyugin, A. V., & Hovorun, D. M. (2011). Tautomeric equilibrium of uracil and thymine in model protein−nucleic acid contacts. Spectroscopic and quantum−chemical approach. Journal of Physical Chemistry B, 114, 1454–1461.
  • Satoha, H., & Manabe, S. (2013). Design of chemical glycosyl donors: Does changing ring conformation influence selectivity/reactivity? Chemical Society Reviews, 42, 4297–4309.
  • Scheiner, S. (2000). CH···O hydrogen bonding. In M. Hargittai & I. Hargittai (Eds.), Advances in molecular structure research (pp. 159–159). Stanford, CA: JAI Press.
  • Scheiner, S. (2005). Relative strengths of NH···O and CH···O hydrogen bonds between polypeptide chain segments. Journal of Physical Chemistry B, 109, 16132–16141.
  • Scheiner, S. (2006). Contributions of NH···O and CH···O hydrogen bonds to the stability of beta-sheets in proteins. Journal of Physical Chemistry B, 110, 18670–18679.
  • Scheiner, S. (2011). Weak H-bonds. Comparisons of CH···O to NH···O in proteins and PH···N to direct P···N interactions. Physical Chemistry Chemical Physics, 13, 13860–13872.
  • Scheiner, S., Grabowski, S. T., & Kar, T. (2001). Influence of hybridization and substitution on the properties of the CH···O hydrogen bond. Journal of Physical Chemistry A, 105, 10607–10612.
  • Scheiner, S., & Kar, T. (2002). Red- versus blue-shifting hydrogen bonds: Are there fundamental distinctions? Journal of Physical Chemistry A, 106, 1784–1789.
  • Schuster, P., Zundel, G., & Sandorfy, C. (1976). The hydrogen bond. Structure and spectroscopy. Amsterdam: North-Holland.
  • Seela, F., & Grein, T. (1992). 7-Deaza-2′-deoxyadenosine and 3-deaza-2′-deoxyadenosine replacing dA within d(A6)-tracts: Differential bending at 3′- and 5′-junctions of d(A6)·d(T6) and B-DNA. Nucleic Acids Research, 20, 2297–2306.
  • Seela, F., & Mersmann, K. (1992). 8-azaadenine 2′,3′-dideoxyribonucleosides: Synthesis via 1,2,3- triazolo[4,5-d]pyrimidinyl anions. Helvetica Chimica Acta, 75, 1885–1896.
  • Seela, F., Münster, I., Lüchner, U., & Rosemeyer, H. (1998). 8-azaadenosine and its 2′-deoxyribonucleoside: Synthesis and oligonucleotide base-pair stability. Helvetica Chimica Acta, 81, 1139–1155.
  • Seela, F., & Röling, A. (1992). 7-Deazapurine containing DNA: Efficiency of c7GdTP, c7AdTP and c7IdTP incorporation during PCR-amplification and protection from endodeoxyribonuclease hydrolysis. Nucleic Acids Research, 20, 55–61.
  • Shibutani, S., Takeshita, M., & Grollman, A. P. (1991). Insertion of specific bases during DNA synthesis past the oxidation damaged base 8-oxodG. Nature, 349, 431–434.
  • Shishkin, O. V., Pelmenschikov, A., Hovorun, D. M., & Leszczynski, J. (2000). Theoretical analysis of low-lying vibrational modes of free canonical 2′-deoxyribonucleosides. Chemical Physics, 260, 317–325.
  • Singh, P., & Hodgson, D. J. (1974). High-anti conformation in o-azanucleosides. The crystal and molecular structure of 6-azacytidine. Biochemistry, 13, 5445–5452.
  • Sordo, J. A. (2001). On the use of the Boys-Bernardi function counterpoise procedure to correct barrier heights for basis set superposition error. Journal of Molecular Structure: THEOCHEM, 537, 245–251.
  • Sordo, J. A., Chin, S., & Sordo, T. L. (1988). On the counterpoise correction for the basis set superposition error in large systems. Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta), 74, 101–110.
  • Srivastava, P., Barman, J., Pathmasiri, W., Plashkevych, O., Wenska, M., & Chattopadhyaya, J. (2007). Five- and six-membered conformationally locked 2’,4’-carbocyclic ribo-thymidines: Synthesis, structure, and biochemical studies. Journal of the American Chemical Society, 129, 8362–8379.
  • Stillwell, W. G., Xu, H. X., Adkins, J. A., Wishnok, J. S., & Tannenbaum, S. R. (1989). Analysis of methylated and oxidized purines in urine by capillary gas chromatography-mass spectrometry. Chemical Research in Toxicololy, 2, 94–99.
  • Strobel, A. A., Ortoleva-Donnelly, L., Ryder, S. P., Cate, J. H., & Moncoeur, E. (1998). Complementary sets of noncanonical base pairs mediate RNA helix packing in the group I intron active site. Nature Structural Biology, 5, 60–66.
  • Suzuki, S., Yukiyama, T., Ishikawa, A., Yuguchi, Y., Funane, K., & Kitamura, S. (2014). Conformation and physical properties of cycloisomaltooligosaccharides in aqueous solution. Carbohydrate Polymers, 99, 432–437.
  • Szatyłowicz, H., & Sadlej-Sosnowska, N. (2010). Characterizing the strength of individual hydrogen bonds in DNA base pairs. Journal of Chemical Information and Modeling, 50, 2151–2161.
  • Tae, E. L., Wu, Y., Xia, G., Schultz, P. G., & Romesberg, F. E. (2001). Efforts toward expansion of the genetic alphabet: Replication of DNA with three base pairs. Journal of the American Chemical Society, 123, 7439–7440.
  • Thomas, S. P., Pavan, M. S., & Row, T. N. G. (2012). Charge density analysis of ferulic acid: Robustness of a trifurcated C-H···O hydrogen bond. Crystal Growth & Design, 12, 6083–6091.
  • Tirado-Rives, J., & Jorgensen, W. L. (2008). Performance of B3LYP density functional methods for a large set of organic molecules. Journal of Chemical Theory and Computation, 4, 297–306.
  • van Hemmen, J. J., & Bleichrodt, J. F. (1971). The decomposition of adenine by ionizing radiation. Radiation Research, 46, 444–456.
  • van Loon, B., Markkanen, E., & Hübscher, U. (2010). Oxygen as a friend and enemy: How to combat the mutational potential of 8-oxo-guanine. DNA Repair (Amst), 9, 604–616.
  • te Velde, G., Bickelhaupt, F. M., Baerends, E. J., Fonseca Guerra, C., van Gisbergen, S. J. A., Snijders, J. G., & Ziegler, T. (2001). Chemistry with ADF. Journal of Computational Chemistry, 22, 931–967.
  • van Mourik, T., Danilov, V. I., Dailidonis, V. V., Kurita, N., Wakabayashi, H., & Tsukamoto, T. (2010). A DFT study of uracil and 5-bromouracil in nanodroplets. Theoretical Chemistry Accounts, 125, 233–244.
  • Vibhute, A. M., & Sureshan, K. M. (2014). Strength from weakness: Conformational divergence between solid and solution states of substituted cyclitols facilitated by CH···O hydrogen bonding. Journal of Organic Chemistry, 79, 4892–4908.
  • Weinhold, F., & Landis, C. (2005). Valency and bonding. A natural bond orbital donor-acceptor perspective. Cambridge: Cambridge University Press.
  • Wöhnert, J., Dingley, A. J., Stoldt, M., Görlach, M., Grzesiek, S., & Brown, L. R. (1999). Direct identification of NH···N hydrogen bonds in non-canonical base pairs of RNA by NMR spectroscopy. Nucleic Acids Research, 27, 3104–3110.
  • Xia, S., Christian, T. D., Wang, J., & Konigsberg, W. H. (2012). Probing minor groove hydrogen bonding interactions between RB69 DNA polymerase and DNA. Biochemistry, 51, 4343–53.
  • Yang, H., & Wong, M. W. (2013). Oxyanion hole stabilization by C-H···O interaction in a transition state – A three-point interaction model for cinchona alkaloid-catalyzed asymmetric methanolysis of meso-cyclic anhydrides. Journal of the American Chemical Society, 135, 5808–5818.
  • Yoon, C., Privé, G. G., Goodsell, D. S., & Dickerson, R. E. (1988). Structure of an alternating-B DNA helix and its relationship to A-tract DNA. Proceedings of the National Academy of Sciences of the United States of America, 85, 6332–6336.
  • Yurenko, Y. P., Zhurakivsky, R. O., Ghomi, M., Samijlenko, S. P., & Hovorun, D. M. (2007a). Comprehensive conformational analysis of the nucleoside analogue 2’β-deoxy-6-azacytidine by DFT and MP2 calculations. Journal of Physical Chemistry B, 111, 6263–6271.
  • Yurenko, Y. P., Zhurakivsky, R. O., Ghomi, M., Samijlenko, S. P., & Hovorun, D. M. (2007b). How many conformers determine the thymidine low-temperature matrix infrared spectrum? DFT and MP2 quantum chemical study. Journal of Physical Chemistry B, 111, 9655–9663.
  • Yurenko, Y. P., Zhurakivsky, R. O., Ghomi, M., Samijlenko, S. P., & Hovorun, D. M. (2008). Ab initio comprehensive conformational analysis of 2′-deoxyuridine, the biologically significant minor nucleoside, and reconstruction of its low temperature matrix infrared spectrum. Journal of Physical Chemistry B, 112, 1240–1250.
  • Yurenko, Y. P., Zhurakivsky, R. O., Samijlenko, S. P., Ghomi, M., & Hovorun, D. M. (2007). The whole of intramolecular H-bonding in the isolated nucleoside thymidine. AIM electron density topological study. Chemical Physics Letters, 447, 140–146.
  • Yurenko, Y. P., Zhurakivsky, R. O., Samijlenko, S. P., & Hovorun, D. M. (2011). Intramolecular CH···O hydrogen bonds in the AI and BI DNA-like conformers of canonical nucleosides and their Watson-Crick pairs. Quantum chemical and AIM analysis. Journal of Biomolecular Structure and Dynamics, 29, 51–65.
  • Zhou, P.-P., & Qiu, W.-Y. (2009). Red-shifted hydrogen bonds and blue-shifted van der Waals contact in the standard Watson-Crick adenine-thymine base pair. Journal of Physical Chemistry A, 113, 10306–10320.
  • Zundel, G. (2000). In I. Prigogine, & S. A. Rice (Eds.), Advances in chemical physics (Vol. 111). New York, NY: Wiley.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.