320
Views
64
CrossRef citations to date
0
Altmetric
Articles

Identification of DNA-binding proteins by incorporating evolutionary information into pseudo amino acid composition via the top-n-gram approach

, , , , , & show all
Pages 1720-1730 | Received 29 Aug 2014, Accepted 18 Sep 2014, Published online: 28 Oct 2014

References

  • Altschul, S. F., Madden, T. L., Schaffer, A. A, Zhang, J. H, Zhang, Z., Miller, W., & Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Research, 25, 3389–3402.10.1093/nar/25.17.3389
  • Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., … Sherlock, G. (2000). Gene ontology: Tool for the unification of biology. The Gene Ontology Consortium. Nature Genetics, 25, 25–29.10.1038/75556
  • Bahar, I., Atilgan, A. R., Jernigan, R. L., & Erman, B. (1997). Understanding the recognition of protein structural classes by amino acid composition. Proteins: Structure, Function, and Genetics, 29, 172–185.10.1002/(ISSN)1097-0134
  • Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., … Bourne, P. E. (2000). The protein data bank. Nucleic Acids Research, 28, 235–242.10.1093/nar/28.1.235
  • Cai, Y. D. (1999). Artificial neural network for predicting alpha-turn types. Analytical Biochemistry 268, 407–409.
  • Cai, Y. D. (2002). Using functional domain composition and support vector machines for prediction of protein subcellular location. Journal of Biological Chemistry, 277, 45765–45769.
  • Cai, Y. D. (2004). Predicting subcellular localization of proteins in a hybridization space. Bioinformatics, 20, 1151–1156.10.1093/bioinformatics/bth054
  • Cai, Y. D., & Zhou, G. P. (2003). Support vector machines for predicting membrane protein types by using functional domain composition. Biophysical Journal, 84, 3257–3263.10.1016/S0006-3495(03)70050-2
  • Cao, D. S., Xu, Q. S., & Liang, Y. Z. (2013). Propy: A tool to generate various modes of Chou’s PseAAC. Bioinformatics, 29, 960–962.10.1093/bioinformatics/btt072
  • Cedano, J., Aloy, P., Pérez-Pons, J. A., & Querol, E. (1997). Relation between amino acid composition and cellular location of proteins. Journal of Molecular Biology, 266, 594–600.10.1006/jmbi.1996.0804
  • Chang, C. C., & Lin, C. J. (2011). LIBSVM. ACM Transactions on Intelligent Systems and Technology, 2, 1–27.10.1145/1961189
  • Chen, W., Feng, P. M., & Deng, E. Z. (2014). iTIS-PseTNC: A sequence-based predictor for identifying translation initiation site in human genes using pseudo trinucleotide composition. Analytical Biochemistry, 462, 76–83.10.1016/j.ab.2014.06.022
  • Chen, W., Feng, P. M., & Lin, H. (2013). iRSpot-PseDNC: Identify recombination spots with pseudo dinucleotide composition. Nucleic Acids Research, 41, e68.10.1093/nar/gks1450
  • Chen, W., Feng, P. M., & Lin, H. (2014). iSS-PseDNC: Identifying splicing sites using pseudo dinucleotide composition. Biomed Research International, 2014, 623149.
  • Chen, W., Lei, T. Y., Jin, D. C., & Lin, H. (2014). PseKNC: A flexible web server for generating pseudo K-tuple nucleotide composition. Analytical Biochemistry, 456, 53–60.10.1016/j.ab.2014.04.001
  • Chen, Y. K., & Li, K. B. (2013). Predicting membrane protein types by incorporating protein topology, domains, signal peptides, and physicochemical properties into the general form of Chou’s pseudo amino acid composition. Journal of Theoretical Biology, 318, 1–12.10.1016/j.jtbi.2012.10.033
  • Chen, W., Lin, H., Feng, P. M., & Ding, C. (2012). iNuc-PhysChem: A sequence-based predictor for identifying nucleosomes via physicochemical properties. PLoS ONE, 7, e47843.10.1371/journal.pone.0047843
  • Chen, J., Liu, H., & Yang, J. (2007). Prediction of linear B-cell epitopes using amino acid pair antigenicity scale. Amino Acids, 33, 423–428.10.1007/s00726-006-0485-9
  • Chou, K. C. (1995). The convergence-divergence duality in lectin domains of selectin family and its implications. FEBS Letters, 363, 123–126.10.1016/0014-5793(95)00240-A
  • Chou, K. C. (2001a). Prediction of protein cellular attributes using pseudo amino acid composition. Proteins: Structure, Function, and Genetics (Erratum: ibid., 2001, Vol. 44, 60), 43, 246–255.
  • Chou, K. C. (2001b). Using subsite coupling to predict signal peptides. Protein Engineering Design and Selection, 14, 75–79.10.1093/protein/14.2.75
  • Chou, K. C. (2004). Structural bioinformatics and its impact to biomedical science. Current Medicinal Chemistry, 11, 2105–2134.10.2174/0929867043364667
  • Chou, K. C. (2005). Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes. Bioinformatics, 21, 10–19.10.1093/bioinformatics/bth466
  • Chou, K. C. (2009). Pseudo amino acid composition and its applications in bioinformatics, proteomics and system biology. Current Proteomics, 6, 262–274.10.2174/157016409789973707
  • Chou, K. C. (2011). Some remarks on protein attribute prediction and pseudo amino acid composition. Journal of Theoretical Biology, 273, 236–247.10.1016/j.jtbi.2010.12.024
  • Chou, K. C. (2013). Some remarks on predicting multi-label attributes in molecular biosystems. Molecular BioSystems, 9, 1092–1100.10.1039/c3mb25555g
  • Chou, K. C., & Shen, H. B. (2009). Review: Recent advances in developing web-servers for predicting protein attributes. Natural Science, 1, 63–92. Retrieved from http://dx.doi.org/10.4236/ns.2009.1201110.4236/ns.2009.12011
  • Chou, K. C., Wu, Z. C., & Xiao, X. (2012). iLoc-Hum: Using accumulation label scale to predict subcellular locations of human proteins with both single and multiple sites. Molecular Bio-Systems, 8, 629–641.
  • Cristianini, N., & Shawe-Taylor, J. (2000). An introduction to Support Vector Machines and other kernel-based learning methods. Cambridge: Cambridge University Press.10.1017/CBO9780511801389
  • Ding, H., Deng, E. Z., Yuan, L. F., & Liu, L. (2014). iCTX-Type: A sequence-based predictor for identifying the types of conotoxins in targeting ion channels. BioMed Research International, 2014, 286419.
  • Du, Q. S., Jiang, Z. Q., & He, W. Z. (2006). Amino acid principal component analysis (AAPCA) and its applications in protein structural class prediction. Journal of Biomolecular Structure and Dynamics, 23, 635–640.10.1080/07391102.2006.10507088
  • Du, P., Gu, S., & Jiao, Y. (2014). PseAAC-General: Fast building various modes of general form of Chou's pseudo-amino acid composition for large-scale protein datasets. International Journal of Molecular Sciences, 15, 3495–3506.
  • Du, P., Wang, X., Xu, C., & Gao, Y. (2012). PseAAC-Builder: A cross-platform stand-alone program for generating various special Chou’s pseudo-amino acid compositions. Analytical Biochemistry, 425, 117–119.10.1016/j.ab.2012.03.015
  • Esmaeili, M., Mohabatkar, H., & Mohsenzadeh, S. (2010). Using the concept of Chou’s pseudo amino acid composition for risk type prediction of human papillomaviruses. Journal of Theoretical Biology, 263, 203–209.10.1016/j.jtbi.2009.11.016
  • Fan, G. L., & Li, Q. Z. (2013). Discriminating bioluminescent proteins by incorporating average chemical shift and evolutionary information into the general form of Chou's pseudo amino acid composition. Journal of Theoretical Biology, 334, 45–51.
  • Feng, K. Y., & Cai, Y. D. (2005). Boosting classifier for predicting protein domain structural class. Biochemical and Biophysical Research Communications, 334, 213–217.10.1016/j.bbrc.2005.06.075
  • Feng, P. M., Chen, W., & Lin, H. (2013). iHSP-PseRAAAC: Identifying the heat shock protein families using pseudo reduced amino acid alphabet composition. Analytical Biochemistry, 442, 118–125.10.1016/j.ab.2013.05.024
  • Gao, M. S. J. (2008). DBD-Hunter: A knowledge-based method for the prediction of DNA-protein interactions. Nucleic Acids Research, 36, 3978–3992.10.1093/nar/gkn332
  • Gasteiger, E., Jung, E., & Bairoch, A. (2001). ExPASy: The proteomics server for in-depth protein knowledge and analysis. Molecular Biology, 3, 47–55.
  • Georgiou, D. N., Karakasidis, T. E., Nieto, J. J., & Torres, A. (2009). Use of fuzzy clustering technique and matrices to classify amino acids and its impact to Chou’s pseudo amino acid composition. Journal of Theoretical Biology, 257, 17–26.10.1016/j.jtbi.2008.11.003
  • Guo, S. H., Deng, E. Z., Xu, L. Q., & Ding, H. (2014). iNuc-PseKNC: A sequence-based predictor for predicting nucleosome positioning in genomes with pseudo k-tuple nucleotide composition. Bioinformatics, 30, 1522–1529.10.1093/bioinformatics/btu083
  • Hajisharifi, Z., Piryaiee, M., Mohammad Beigi, M., Behbahani, M., & Mohabatkar, H. (2014). Predicting anticancer peptides with Chou’s pseudo amino acid composition and investigating their mutagenicity via Ames test. Journal of Theoretical Biology, 341, 34–40.10.1016/j.jtbi.2013.08.037
  • Han, G. S., Yu, Z. G., & Anh, V. (2014). A two-stage SVM method to predict membrane protein types by incorporating amino acid classifications and physicochemical properties into a general form of Chou’s PseAAC. Journal of Theoretical Biology, 344, 31–39.10.1016/j.jtbi.2013.11.017
  • Hayat, M., & Iqbal, N. (2014). Discriminating protein structure classes by incorporating Pseudo Average Chemical Shift to Chou’s general PseAAC and Support Vector Machine. Computer Methods and Programs in Biomedicine, 116, 184–192.10.1016/j.cmpb.2014.06.007
  • Hayat, M., & Khan, A. (2012). Discriminating outer membrane proteins with Fuzzy K-nearest neighbor algorithms based on the general form of Chou’s PseAAC. Protein and Peptide Letters, 19, 411–421.10.2174/092986612799789387
  • Holm, L. S. C. (1993). Protein structure comparison by alignment of distance matrices. Journal of Molecular Biology, 233, 123–138.10.1006/jmbi.1993.1489
  • Huang, T., Wang, J., & Cai, Y. D. (2012). Hepatitis C virus network based classification of hepatocellular cirrhosis and carcinoma. PLoS ONE, 7, e34460.10.1371/journal.pone.0034460
  • Jia, C., Lin, X., & Wang, Z. (2014). Prediction of protein S-nitrosylation sites based on adapted normal distribution bi-profile Bayes and Chou’s pseudo amino acid composition. International Journal of Molecular Sciences, 15, 10410–10423.10.3390/ijms150610410
  • Jiang, Y., Huang, T., Chen, L., & Gao, Y. F. (2013). Signal propagation in protein interaction network during colorectal cancer progression. Biomedical Research International, 2013, 287019.
  • Kandaswamy, K. K., Pugalenthi, G., Moller, S., Hartmann, E., Uwe Kalies, K. U., Suganthan, P. N., & Martinetz, T. (2010). Prediction of apoptosis protein locations with genetic algorithms and support vector machines through a new mode of pseudo amino acid composition. Protein and Peptide Letters, 17, 1473–1479.10.2174/0929866511009011473
  • Kandaswamy, K. K., Suganthan, P. N., Sridharan, S., & Pugalenthi, G. (2011). AFP-Pred: A random forest approach for predicting antifreeze proteins from sequence-derived properties. Journal of Theoretical Biology, 270, 56–62.10.1016/j.jtbi.2010.10.037
  • Khosravian, M., Faramarzi, F. K., Beigi, M. M., Behbahani, M., & Mohabatkar, H. (2013). Predicting antibacterial peptides by the concept of Chou’s pseudo-amino acid composition and machine learning methods. Protein and Peptide Letters, 20, 180–186.10.2174/092986613804725307
  • Kong, L., Zhang, L., & Lv, J. (2014). Accurate prediction of protein structural classes by incorporating predicted secondary structure information into the general form of Chou’s pseudo amino acid composition. Journal of Theoretical Biology, 344, 12–18.10.1016/j.jtbi.2013.11.021
  • Krogh, A., Brown, M., Mian, I. S., Sjolander, K., & Haussler, D. (1994). Hidden markov models in computational biology – Applications to protein modeling. Journal of Molecular Biology, 235, 1501–1531.
  • Kumar, K. K., Pugalenthi, G., & Suganthan, P. N. (2009). DNA-Prot: Identification of DNA binding proteins from protein sequence information using random forest. Journal of Biomolecular Structure & Dynamics, 26, 679–686.
  • Kumar, M. G. M., & Raghava, G. P. (2007). Identification of DNA-binding proteins using support vector machines and evolutionary profiles. BMC Bioinformatics, 8, 463.10.1186/1471-2105-8-463
  • Li, B. Q., Huang, T., Liu, L., & Cai, Y. D. (2012). Identification of colorectal cancer related genes with mrmr and shortest path in protein-protein interaction network. PLoS ONE, 7, e33393.10.1371/journal.pone.0033393
  • Li, L., Yu, S., Xiao, W., Li, Y., Li, M., Huang, L., … Yang, H. (2014). Prediction of bacterial protein subcellular localization by incorporating various features into Chou’s PseAAC and a backward feature selection approach. Biochimie, 104, 100–107.10.1016/j.biochi.2014.06.001
  • Lin, W. Z., & Fang, J. A. (2011). iDNA-Prot: Identification of DNA binding proteins using random forest with grey model. PLoS ONE, 6, e24756.10.1371/journal.pone.0024756
  • Lin, W. Z., Fang, J. A., & Xiao, X. (2012). Predicting secretory proteins of malaria parasite by incorporating sequence evolution information into pseudo amino acid composition via grey system model. PLoS ONE, 7, e49040.10.1371/journal.pone.0049040
  • Lin, S. X., & Lapointe, J. (2013). Theoretical and experimental biology in one. Journal of Biomedical Science and Engineering, 6, 435–442.10.4236/jbise.2013.64054
  • Liu, H., & Wang, M. (2005). Low-frequency Fourier spectrum for predicting membrane protein types. Biochemical and Biophysical Research Communications, 336, 737–739.10.1016/j.bbrc.2005.08.160
  • Liu, B., Wang, X., Lin, L., Dong, Q., & Wang, X. (2008). A discriminative method for protein remote homology detection and fold recognition combining Top-n-grams and latent semantic analysis. BMC Bioinformatics, 9, 510.10.1186/1471-2105-9-510
  • Liu, B., Wang, X., Zou, Q., Dong, Q., & Chen, Q. (2013). Protein remote homology detection by combining Chou’s pseudo amino acid composition and profile-based protein representation. Molecular Informatics, 32, 775–782.10.1002/minf.v32.9/10
  • Liu, B., Xu, J., Lan, X., Xu, R., Zhou, J., & Wang, X. (2014). iDNA-Prot|dis: Identifying DNA-binding proteins by incorporating amino acid distance-pairs and reduced alphabet profile into the general pseudo amino acid composition. PLoS ONE, 9, e106691.10.1371/journal.pone.0106691
  • Liu, B., Zhang, D., Xu, R., Xu, J., Wang, X., & Chen, Q. (2014). Combining evolutionary information extracted from frequency profiles with sequence-based kernels for protein remote homology detection. Bioinformatics, 30, 472–479.10.1093/bioinformatics/btt709
  • Luscombe, N. M., Austin, S. E., Berman, H. M., & Thornton, J. M. (2000). An overview of the structures of protein-DNA complexes. Genome Biology, 1, REVIEWS001.
  • Margulies, M., Egholm, M., Altman, W. E., Attiya, S., Bader, J. S., Braverman, M. S., ... Rothberg, J. M. (2005). Genome sequencing in microfabricated high-density picolitre reactors. Nature, 437, 376–380.
  • Mei, S. (2012). Predicting plant protein subcellular multi-localization by Chou’s PseAAC formulation based multi-label homolog knowledge transfer learning. Journal of Theoretical Biology, 310, 80–87.10.1016/j.jtbi.2012.06.028
  • Mi, H. Y., Vandergriff, J., Campbell, M., Narechania, A., & Majoros, W. (2003). Assessment of genome-wide protein function classification for Drosophila melanogaster. Genome Research, 13, 2118–2128.10.1101/gr.771603
  • Mohabatkar, H. (2010). Prediction of cyclin proteins using Chou’s pseudo amino acid composition. Protein and Peptide Letters, 17, 1207–1214.10.2174/092986610792231564
  • Mohabatkar, H., Beigi, M. M., Abdolahi, K., & Mohsenzadeh, S. (2013). Prediction of allergenic proteins by means of the concept of Chou’s pseudo amino acid composition and a machine learning approach. Medicinal Chemistry, 9, 133–137.10.2174/157340613804488341
  • Mohabatkar, H., Mohammad Beigi, M., & Esmaeili, A. (2011). Prediction of GABAA receptor proteins using the concept of Chou’s pseudo-amino acid composition and support vector machine. Journal of Theoretical Biology, 281, 18–23.10.1016/j.jtbi.2011.04.017
  • Mohammad Beigi, M., Behjati, M., & Mohabatkar, H. (2011). Prediction of metalloproteinase family based on the concept of Chou’s pseudo amino acid composition using a machine learning approach. Journal of Structural and Functional Genomics, 12, 191–197.10.1007/s10969-011-9120-4
  • Mondal, S., & Pai, P. P. (2014). Chou’s pseudo amino acid composition improves sequence-based antifreeze protein prediction. Journal of Theoretical Biology, 356, 30–35.10.1016/j.jtbi.2014.04.006
  • Nakashima, H., & Nishikawa, K. (1994). Discrimination of intracellular and extracellular proteins using amino acid composition and residue-pair frequencies. Journal of Molecular Biology, 238, 54–61.10.1006/jmbi.1994.1267
  • Nanni, L., Brahnam, S., & Lumini, A. (2014). Prediction of protein structure classes by incorporating different protein descriptors into general Chou’s pseudo amino acid composition. Journal of Theoretical Biology, 360, 109–116.10.1016/j.jtbi.2014.07.003
  • Nanni, L., & Lumini, A. (2008). Genetic programming for creating Chou’s pseudo amino acid based features for submitochondria localization. Amino Acids, 34, 653–660.10.1007/s00726-007-0018-1
  • Nanni, L., Lumini, A., Gupta, D., & Garg, A. (2012). Identifying bacterial virulent proteins by fusing a set of classifiers based on variants of Chou’s pseudo amino acid composition and on evolutionary information. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 9, 467–475.10.1109/TCBB.2011.117
  • Nishkawa, K., Kubota, Y., & Ooi, T. (1983). Classification of proteins into groups based on amino acid composition and other characters. II. Grouping into four types. Journal of Biochemistry, 94, 997–1007.
  • Niu, S., Hu, L. L., Zheng, L. L., Huang, T., & Feng, K. Y. (2012). Predicting protein oxidation sites with feature selection and analysis approach. Journal of Biomolecular Structure & Dynamics (JBSD), 29, 650–658.
  • Qiu, W. R., & Xiao, X. (2014). iRSpot-TNCPseAAC: Identify recombination spots with trinucleotide composition and pseudo amino acid components. International Journal of Molecular Sciences, 15, 1746–1766.10.3390/ijms15021746
  • Qiu, W. R., Xiao, X., & Lin, W. Z. (2014). iMethyl-PseAAC: Identification of protein methylation sites via a pseudo amino acid composition approach. Biomed Res Int, 2014, 947416.
  • Sahu, S. S., & Panda, G. (2010). A novel feature representation method based on Chou’s pseudo amino acid composition for protein structural class prediction. Computational Biology and Chemistry, 34, 320–327.10.1016/j.compbiolchem.2010.09.002
  • Schaffer, A. A., Aravind, L., Madden, T. L., Shavirin, S., Spouge, J. L., Wolf, Y. I., … Altschul, S. F. (2001). Improving the accuracy of PSI-BLAST protein database searches with composition-based statistics and other refinements. Nucleic Acids Research, 29, 2994–3005.10.1093/nar/29.14.2994
  • Shen, H. B. (2005). Using optimized evidence-theoretic K-nearest neighbor classifier and pseudo amino acid composition to predict membrane protein types. Biochemical and Biophysical Research Communications, 334, 288–292.10.1016/j.bbrc.2005.06.087
  • Shen, H. B. (2006). Large-scale predictions of Gram-negative bacterial protein subcellular locations. Journal of Proteome Research, 5, 3420–3428.
  • Shen, H. B. (2007a). Nuc-PLoc: A new web-server for predicting protein subnuclear localization by fusing PseAA composition and PsePSSM. Protein Engineering, Design & Selection, 20, 561–567.
  • Shen, H. B. (2007b). Review: Recent progresses in protein subcellular location prediction. Analytical Biochemistry, 370, 1–16.10.1016/j.ab.2006.11.038
  • Shen, H. B. (2007c). MemType-2L: A web server for predicting membrane proteins and their types by incorporating evolution information through Pse-PSSM. Biochemical and Biophysical Research Communications, 360, 339–345.
  • Shen, H. B., & Chou, K. C. (2008). PseAAC: A flexible web server for generating various kinds of protein pseudo amino acid composition. Analytical Biochemistry, 373, 386–388.10.1016/j.ab.2007.10.012
  • Shen, H. B. (2009a). QuatIdent: A web server for identifying protein quaternary structural attribute by fusing functional domain and sequential evolution information. Journal of Proteome Research, 8, 1577–1584.10.1021/pr800957q
  • Shen, H. B. (2009b). A top-down approach to enhance the power of predicting human protein subcellular localization: Hum-mPLoc 2.0. Analytical Biochemistry, 394, 269–274.10.1016/j.ab.2009.07.046
  • Shen, H. B. (2009c). Predicting protein fold pattern with functional domain and sequential evolution information. Journal of Theoretical Biology, 256, 441–446.10.1016/j.jtbi.2008.10.007
  • Shen, H. B. (2010). Virus-mPLoc: A fusion classifier for viral protein subcellular location prediction by incorporating multiple sites. Journal of Biomolecular Structure and Dynamics, 28, 175–186.10.1080/07391102.2010.10507351
  • Shen, H. B., Yang, J., & Liu, X. J. (2005). Using supervised fuzzy clustering to predict protein structural classes. Biochemical and Biophysical Research Communications, 334, 577–581.10.1016/j.bbrc.2005.06.128
  • Shendure, J., Porreca, G. J., Reppas, N. B., Lin, X. X., McCutcheon, J. P., Rosenbaum, A. M., ... Church, G. M. (2005). Accurate multiplex polony sequencing of an evolved bacterial genome. Science, 309, 1728–1732.10.1126/science.1117389
  • Shindyalov, I. N., & Bourne, P. E. (1998). Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. Protein Engineering Design and Selection, 11, 739–747.10.1093/protein/11.9.739
  • Skolnick, J. F. J. (2000). From genes to protein structure and function: Novel applications of computational approaches in the genomic era. Trends in Biotechnology, 18, 34–39.10.1016/S0167-7799(99)01398-0
  • Stawiski, E. W., Gregoret, L. M., & Mandel, G. Y. (2003). Annotating nucleic acid-binding function based on protein structure. Journal of Molecular Biology, 326, 1065–1079.10.1016/S0022-2836(03)00031-7
  • Stawiski, E. W., Gregoret, L. M., & Mandel-Gutfreund, Y. (2003). Annotating nucleic acid-binding function based on protein structure. Journal of molecular biology, 326, 1065–1079.
  • Sun, X. Y., Shi, S. P., Qiu, J. D., Suo, S. B., Huang, S. Y., & Liang, R. P. (2012). Identifying protein quaternary structural attributes by incorporating physicochemical properties into the general form of Chou’s PseAAC via discrete wavelet transform. Molecular BioSystems, 8, 3178–3184.10.1039/c2mb25280e
  • Tatusov, R. L., Fedorova, N. D., Jackson, J. D., Jacobs, A. R., Kiryutin, B., Koonin, E. V., … Natale, D. A. (2003). The COG database: An updated version includes eukaryotes. BMC Bioinformatics, 4, 41.10.1186/1471-2105-4-41
  • Thompson, T. B., & Zheng, C. (1995). Neural network prediction of the HIV-1 protease cleavage sites. Journal of Theoretical Biology, 177, 369–379.10.1006/jtbi.1995.0254
  • Tian, W. D., Arakaki, A. K., & Skolnick, J. (2004). EFICAz: A comprehensive approach for accurate genome-scale enzyme function inference. Nucleic Acids Research, 32, 6226–6239.10.1093/nar/gkh956
  • Wang, S. Q., & Yang, J. (2006). Using stacked generalization to predict membrane protein types based on pseudo amino acid composition. Journal of Theoretical Biology, 242, 941–946.10.1016/j.jtbi.2006.05.006
  • Wang, T., Yang, J., & Shen, H. B. (2008). Predicting membrane protein types by the LLDA algorithm. Protein and Peptide Letters, 15, 915–921.10.2174/092986608785849308
  • Wang, M., Yang, J., & Xu, Z. J. (2005). SLLE for predicting membrane protein types. Journal of Theoretical Biology, 232, 7–15.10.1016/j.jtbi.2004.07.023
  • Wass, M. N., & Sternberg, M. J. E. (2008). ConFunc – Functional annotation in the twilight zone. Bioinformatics, 24, 798–806.10.1093/bioinformatics/btn037
  • Wheeler, D. A., Srinivasan, M., Egholm, M., Shen, Y., & Chen, L. (2008). The complete genome of an individual by massively parallel DNA sequencing. Nature, 452, 872–876.10.1038/nature06884
  • Wilson, C. A., Kreychman, J., & Gerstein, M. (2000). Assessing annotation transfer for genomics: Quantifying the relations between protein sequence, structure and function through traditional and probabilistic scores. Journal of Molecular Biology, 297, 233–249.10.1006/jmbi.2000.3550
  • Wu, Z. C., & Xiao, X. (2011a). iLoc-Plant: A multi-label classifier for predicting the subcellular localization of plant proteins with both single and multiple sites. Molecular BioSystems, 7, 3287–3297.10.1039/c1mb05232b
  • Wu, Z. C., & Xiao, X. (2011b). iLoc-Euk: A multi-label classifier for predicting the subcellular localization of singleplex and multiplex eukaryotic proteins. PLoS ONE, 6, e18258.
  • Xiao, X., Min, J. L., & Wang, P. (2013a). iGPCR-Drug: A web server for predicting interaction between GPCRs and drugs in cellular networking. PLoS ONE, 8, e72234.10.1371/journal.pone.0072234
  • Xiao, X., Min, J. L., & Wang, P. (2013b). iCDI-PseFpt: Identify the channel-drug interaction in cellular networking with PseAAC and molecular fingerprints. Journal of Theoretical Biology, 337, 71–79.10.1016/j.jtbi.2013.08.013
  • Xiao, X., & Wang, P. (2008). Predicting protein structural classes with pseudo amino acid composition: An approach using geometric moments of cellular automaton image. Journal of Theoretical Biology, 254, 691–696.10.1016/j.jtbi.2008.06.016
  • Xiao, X., & Wang, P. (2012). iNR-PhysChem: A sequence-based predictor for identifying nuclear receptors and their subfamilies via physical-chemical property matrix. PLoS ONE, 7, e30869.10.1371/journal.pone.0030869
  • Xiao, X., Wang, P., & Lin, W. Z. (2013). iAMP-2L: A two-level multi-label classifier for identifying antimicrobial peptides and their functional types. Analytical Biochemistry, 436, 168–177.10.1016/j.ab.2013.01.019
  • Xiao, X., & Wu, Z. C. (2011). A multi-label classifier for predicting the subcellular localization of gram-negative bacterial proteins with both single and multiple sites. PLoS ONE, 6, e20592.10.1371/journal.pone.0020592
  • Xu, Y., Ding, J., & Wu, L. Y. (2013). iSNO-PseAAC: Predict cysteine S-nitrosylation sites in proteins by incorporating position specific amino acid propensity into pseudo amino acid composition. PLoS ONE, 8, e55844.10.1371/journal.pone.0055844
  • Xu, Y., Wen, X., Shao, X. J., & Deng, N. Y. (2014). iHyd-PseAAC: Predicting hydroxyproline and hydroxylysine in proteins by incorporating dipeptide position-specific propensity into pseudo amino acid composition. International Journal of Molecular Sciences, 15, 7594–7610.10.3390/ijms15057594
  • Xu, Y., Wen, X., Wen, L. S., & Wu, L. Y. (2014). iNitro-Tyr: Prediction of nitrotyrosine sites in proteins with general pseudo amino acid composition. PLoS ONE, 9, e105018.10.1371/journal.pone.0105018
  • Zhang, C. T. (1995). Review: Prediction of protein structural classes. Critical Reviews in Biochemistry and Molecular Biology, 30, 275–349.
  • Zhang, J., Zhao, X., Sun, P., & Ma, Z. (2014). PSNO: Predicting cysteine S-nitrosylation sites by incorporating various sequence-derived features into the general form of Chou’s PseAAC. International Journal of Molecular Sciences, 15, 11204–11219.10.3390/ijms150711204
  • Zhang, L., Zhao, X., & Kong, L. (2014). Predict protein structural class for low-similarity sequences by evolutionary difference information into the general form of Chou’s pseudo amino acid composition. Journal of Theoretical Biology, 355, 105–110.10.1016/j.jtbi.2014.04.008
  • Zhang, S. W., Zhang, Y. L., & Pan, Q. (2008). Estimating residue evolutionary conservation by introducing von Neumann entropy and a novel gap-treating approach. Amino Acids, 35, 495–501.10.1007/s00726-007-0586-0
  • Zhang, S. W., Zhang, Y. L., Yang, H. F., Zhao, C. H., & Pan, Q. (2008). Using the concept of Chou’s pseudo amino acid composition to predict protein subcellular localization: An approach by incorporating evolutionary information and von Neumann entropies. Amino Acids, 34, 565–572.10.1007/s00726-007-0010-9
  • Zhang, Y. S. J. (2005). TM-align: A protein structure alignment algorithm based on the TM-score. Nucleic Acids Research, 33, 2302–2309.10.1093/nar/gki524
  • Zhou, G. P. (1998). An intriguing controversy over protein structural class prediction. Journal of Protein Chemistry, 17, 729–738.10.1023/A:1020713915365
  • Zhou, G. P., & Assa-Munt, N. (2001). Some insights into protein structural class prediction. Proteins: Structure, Function, and Genetics, 44, 57–59.10.1002/(ISSN)1097-0134
  • Zhou, G. P., & Doctor, K. (2003). Subcellular location prediction of apoptosis proteins. Proteins: Structure, Function, and Genetics, 50, 44–48.
  • Zia Ur, R., & Khan, A. (2012). Identifying GPCRs and their types with Chou’s pseudo amino acid composition: An approach from multi-scale energy representation and position specific scoring matrix. Protein and Peptide Letters, 19, 890–903.10.2174/092986612801619589
  • Zou, D., He, Z., He, J., & Xia, Y. (2011). Supersecondary structure prediction using Chou’s pseudo amino acid composition. Journal of Computational Chemistry, 32, 271–278.10.1002/jcc.v32.2
  • Zuo, Y. C., Peng, Y., Liu, L., Chen, W., Yang, L., & Fan, G. L. (2014). Predicting peroxidase subcellular location by hybridizing different descriptors of Chou’s pseudo amino acid patterns. Analytical Biochemistry, 458, 14–19.10.1016/j.ab.2014.04.032

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.