195
Views
1
CrossRef citations to date
0
Altmetric
Articles

Conformations of a model cyclic hexapeptide, CYIQNC: 1H-NMR and molecular dynamics studies

&
Pages 1850-1865 | Received 01 Jul 2014, Accepted 07 Oct 2014, Published online: 06 Nov 2014

References

  • Aue, W. P., Bartholidi, E., & Ernst, R. R. (1976). Two dimensional spectroscopy: Application to nuclear magnetic resonance. The Journal of Chemical Physics, 64, 2229–2246. doi:10.1063/1.43245010.1063/1.432450
  • Ballardin, A., Fischman, A. J., Gibbons, W. A., Roy, J., Schwartz, I. L., Smith, C. W., … Wyssbrod, H. R. (1978). Conformational studies on [Pro3,Gly4]-oxytocin in dimethyl sulfoxide by proton nuclear magnetic resonance spectroscopy: Evidence for a type II β turn in the cyclic moiety. Biochemistry, 17, 4443–4454. doi:10.1021/bi00614a01410.1021/bi00614a014
  • Barth, T., Rychlík, I., Zaoral, M., & Cort, J. H. (1974). Antidiuretic activity of oxytocin-1,6-hexapeptides (tocinoic acid and amide) in the rat. Endocrinologia Experimentalis, 8, 45–50. Retrieved from PMID: 4547704
  • Bax, A., & Davis, D. G. (1985). MLEV-17 based two-dimensional homonuclear magnetism transfer spectroscopy. Journal of Magnetic Resonance, 65, 355–360. Retrieved from http://spin.niddk.nih.gov/bax/lit/spdf/62.pdf
  • Bélec, L., Blankenship, J. W., & Lubell, W. D. (2005). Examination of structural characteristics of the potent oxytocin antagonists [dPen1,Pen6]-OT and [dPen1,Pen6, 5-tBuPro7]-OT by NMR, raman, CD spectroscopy and molecular modeling. Journal of Peptide Science, 11, 365–378. doi:10.1002/psc.637.10.1002/(ISSN)1099-1387
  • Bhaskaran, R., Chuang, C., & Yu, C. (1992). Conformational properties of oxytocin in dimethyl sulfoxide solution: NMR and restrained molecular dynamics studies. Biopolymers, 32, 1599–1608. doi:10.1002/bip.36032120310.1002/(ISSN)1097-0282
  • Blumenstein, M., Hruby, V. J., Viswanatha, V., & Chaturvedi, D. (1984). Carbon-13 chemical shifts on oxytocin as a consequence of its interaction with neurophysins. Biochemistry, 23, 2153–2161. doi:10.1021/bi00305a00810.1021/bi00305a008
  • Braunshweiler, L., & Ernst, R. R. (1983). Coherence transfer by isotropic mixing: Application to proton correlation spectroscopy. Journal of Magnetic Resonance, 53, 521–528. doi:10.1016/0022-2364(83)90226-3
  • Brewster, A. I. R., & Hruby, V. J. (1973). 300-MHz nuclear magnetic resonance study of oxytocin in aqueous solution: Conformational implications. Proceedings of the National Academy of Sciences, 70, 3806–3809. Retrieved from http://www.pnas.org/content/70/12/3806.abstract?sid=79ed8963-b563-402c-936d-9288be63e50910.1073/pnas.70.12.3806
  • Brewster, A. I. R., Hruby, V. J., Glasel, J. A., & Tonelli, A. E. (1973). Proposed conformations of oxytocin and selected analogs in dimethyl sulfoxide as deduced from proton magnetic resonance studies. Biochemistry, 12, 5294–5304. doi:10.1021/bi00750a01210.1021/bi00750a012
  • Budesínsky, M., Procházka, Z., & Slaninová, J. (2005). Oxytocin and its analogs, methyl-substituted in ortho-, meta- or para- position of aromatic ring of phenylalanine in position 2: NMR study and biological activities. Protein and Peptide Letters, 12, 343–347. doi: 10.2174/092986605376575210.2174/0929866053765752
  • Carnazzi, E., Aumelas, A., Mouillac, B., Breton, C., Guillou, L., Barberis, C., & Seyer, R. (2001). Design, synthesis and pharmacological characterization of a potent radioiodinated and photoactivatable peptidic oxytocin antagonist. Journal of Medicinal Chemistry, 44, 3022–3030. doi:10.1021/jm010125u10.1021/jm010125u
  • Constantine, K. L., Friedricks, M. S., & Stouch, T. R. (1996). Extensive molecular dynamics simulation of a β-hairpin forming peptide. Biopolymers, 39, 591–614. doi:10.1002/(SICI)1097-0282(199610)39::4<591:AID-BIP9>3.0.CO;2-S
  • Cowburn, D., Live, D. H., Fischman, A. J., & Agosta, W. D. (1983). Side chain conformations of oxytocin and vasopressin studied by NMR observation of isotopic isomers. Journal of the American Chemical Society, 105, 7435–7442. doi:10.1021/ja00363a03810.1021/ja00363a038
  • Dyson, H. J., Rance, M., Houghten, R. A., Lerner, R. A., & Wright, P. K. (1988). Folding of immunogenic peptide fragments of proteins in water solution. Journal of Molecular Biology, 201, 161–200. doi:10.1016/0022-2836(88)90446-910.1016/0022-2836(88)90446-9
  • Efimov, A. V. (1993). Standard structures in proteins. Progress in Biophysics and Molecular Biology, 60, 201–239. doi:10.1016/0079-6107(93)90015-C10.1016/0079-6107(93)90015-C
  • Eubanks, S., Lu, M., Peyton, D., & Breslow, E. (1999). Expression, folding, and thermodynamic properties of the bovine oxytocin–neurophysin precursor: Relationships to the intermolecular oxytocin–neurophysin complex. Biochemistry, 38, 13530–13541. doi:10.1021/bi991295010.1021/bi9912950
  • Feeney, J., Roberts, G. C. K., Rockey, J. H., & Burgen, A. S. V. (1971). Conformational studies of oxytocin and lysine vasopressin in aqueous solution using high resolution NMR spectroscopy. Nature New Biology, 232, 108–110. doi:10.1038/newbio232108a010.1038/newbio232108a0
  • Gibson, K. D., & Scheraga, H. A. (1967). Minimization of polypeptide energy. II. Preliminary structures of oxytocin, vasopressin, and an octapeptide from ribonuclease. Proceedings of the National Academy of Sciences, 58, 1317–1323. Retrieved from http://www.pnas.org/content/58/4/1317.full.pdf10.1073/pnas.58.4.1317
  • Gimpl, G., & Fahrenholz, F. (2001). The oxytocin receptor system: structure, function, and regulation. Physiological Review, 2, 629–683. Retrieved from http://physrev.physiology.org/content/physrev/81/2/629.full.pdf
  • Glickson, J. D., Rowan, R., Pitner, T. P., Dadok, J., Bothner-By, A. A., & Walter, R. (1976). Proton nuclear magnetic resonance double resonance study of oxytocin in aqueous solution. Biochemistry, 15, 1111–1119. doi:10.1021/bi00650a02510.1021/bi00650a025
  • Glickson, J. D., Urry, D. W., & Walter, R. (1972). Method for correlation of proton magnetic resonance assignments in different solvents: Conformational transition of oxytocin and lysine vasopressin from dimethylsulfoxide to Water. Proceedings of the National Academy of Sciences, 69, 2566–2569. Retrieved from http://www.pnas.org/content/69/9/2566.abstract10.1073/pnas.69.9.2566
  • Griensinger, C., Sorensen, O. W., & Ernst, R. R. (1985). Two dimensional correlation of connected NMR transitions. Journal of the American Chemical Society, 107, 6394–6396. doi:10.1021/ja00308a04210.1021/ja00308a042
  • Hruby, V. J. (1987). Implications of the X-ray structure of deamino-oxytocin to agonist/antagonist–receptor interactions. Trends in Pharmacological Sciences, 8, 336–339. doi:10.1016/0165-6147(87)90142-810.1016/0165-6147(87)90142-8
  • Johnson, L. F., Schwartz, I. L., & Walter, R. (1969). Oxytocin and neurohypophyseal peptides: Spectral assignment and conformational analysis by 220 MHz nuclear magnetic resonance. Proceedings of the National Academy of Sciences, 64, 1269–1275. Retrieved from http://www.pnas.org/content/64/4/1269.abstract
  • Kato, T., Endo, S., Fujiwara, T., & Nagayama, K. (1993). Oxytocin solution structure changes upon protonation of the N-terminus in dimethyl sulfoxide. Journal of Biomolecular NMR, 3, 653–673. doi:10.1007/BF00198370
  • van Kesteren, R. E., Smit, A. B., Dirks, R. W., de With, N. D., Geraerts, W. P., & Joosse, J. (1992). Evolution of the vasopressin/oxytocin superfamily: Characterization of a cDNA encoding a vasopressin-related precursor, preproconopressin, from the mollusc Lymnaea stagnalis. Proceedings of the National Academy of Sciences, 89, 4593–4597. doi:10.1073/pnas.89.10.459310.1073/pnas.89.10.4593
  • Kotelchuck, D., Scheraga, H. A., & Walter, R. (1972). Conformational energy studies of oxytocin and its cyclic moiety. Proceedings of the National Academy of Sciences, 69, 3629–3633. Retrieved from http://www.pnas.org/content/69/12/3629.abstract10.1073/pnas.69.12.3629
  • Kumar, A., Ernst, R. R., & Wuthrich, K. (1980). A two-dimensional nuclear Overhauser enhancement (2D NOE) experiment for the elucidation of complete proton–proton cross-relaxation networks in biological macromolecules. Biochemical and Biophysical Research Communications, 95, 1–6. doi:10.1016/0006-291X(80)90695-610.1016/0006-291X(80)90695-6
  • Lebl, M., Hill, P., Kazmierski, W., Kárászová, L., Slaninová, J., Fric, I., & Hruby, V. J. (1990). Conformationally restricted analogues of oxytocin; Stabilization of inhibitory conformation. International Journal of Peptide and Protein Research, 36, 321–330. doi:10.1111/j.1399-3011.1990.tb01289.x
  • Lewis, P. N., Momany, F. A., & Scheraga, H. A. (1973). Chain reversals in proteins. Biochemica et Biophysica Acta, 303, 211–229. doi: 10.1016/0005-2795(73)90350-410.1016/0005-2795(73)90350-4
  • Lippens, G., Hallenga, K., Van Belle, D., Wodak, S. J., Nirmala, N. R., Hill, P., … Hruby, V. J. (1993). Transfer nuclear Overhauser effect study of the conformation of oxytocin bound to bovine neurophysin I. Biochemistry, 32, 9423–9434. doi:10.1021/bi00087a02210.1021/bi00087a022
  • Live, D. H., Cowburn, D., & Breslow, E. (1987). Binding of oxytocin and 8-arginine-vasopressin to neurophysin studied by nitrogen-15 NMR using magnetization transfer and indirect detection via protons. Biochemistry, 26, 6415–6422. doi:10.1021/bi00394a01810.1021/bi00394a018
  • Liwo, A., Tempczyk, A., & Grzonka, Z. (1989). Molecular mechanics calculations on deaminooxytocin and on deamino-arginine-vasopressin and its analogues. Journal of Computer-Aided Molecular Design, 2, 281–309. doi:10.1007/BF0153299110.1007/BF01532991
  • Liwo, A., Tempczyk, A., Oldziej, S., Shenderovich, M. D., Hruby, V. J., & Talluri, S. (1996). Exploration of the conformational space of oxytocin and arginine-vasopressin using the electrostatically driven monte carlo and molecular dynamics methods. Biopolymers, 38, 157–175. doi:https://doi.org/10.1002/(SICI)1097-0282(199602)38:2<157:AID-BIP3>3.0.CO;2-U
  • Lubecka, E. A., Sikorska, E., Marcinkowska, A., & Ciarkowski, J. (2014). Conformational studies of neurohypophyseal hormones analogues with glycoconjugates by NMR spectroscopy. Journal of Peptide Science, 20, 406–414. doi:10.1002/psc.262810.1002/psc.v20.6
  • Manning, M., Coy, E., & Sawyer, W. H. (1970). Solid-phase synthesis of (4-threonine)-oxytocin. A more potent and specific oxytocic agent than oxytocin. Biochemistry (Moscow), 9, 3925–3930. doi:10.1021/bi00822a010
  • Manning, M., Coy, E., & Sawyer, W. H. (1977). Relative conformational rigidity in oxytocin and (1-penicillamine)-oxytocin: A proposal for the relationship of conformational flexibility to peptide hormone agonism and antagonism. Proceedings of the National academy of Sciences of the United States of America, 74, 1373–1377. Retrieved from http://www.pnas.org/content/74/4/1373.abstract
  • Mosberg, H. I., Hruby, V. J., & Meraldi, J. P. (1981). Conformational study of the potent peptide hormone antagonist [1-penicillamine,2-leucine]oxytocin in aqueous solution. Biochemistry, 20, 2822–2828. doi:10.1021/bi00513a01810.1021/bi00513a018
  • Newschaffer, C. J., Croen, L. A., Daniels, J., Giarelli, E., Grether, J. K., Levy, S. E., … Windham, G. C. (2007). The epidemiology of autism spectrum disorders. Annual Review of Public Health, 28, 235–258. doi:10.1146/annurev.publhealth.28.021406.14400710.1146/annurev.publhealth.28.021406.144007
  • Nikiforovich, G. V., Leonova, V. I., Galaktionov, S. G., & Chipens, G. I. (1979). Theoretical conformational analysis of oxytocin molecule. International Journal of Peptide and Protein Research, 13, 363–373. doi:10.1111/j.1399-3011.1979.tb01894.x
  • NMRchitect 95.0. (1995). Molecular simulations package. Biosym Technologies: San Diego.
  • Ohno, A., Kawasaki, N., Okuda, H., & Yamaguchi, H. (2010). Complete NMR analysis of oxytocin in phosphate buffer. Magnetic Resonance in Chemistry, 48, 168–172. doi:10.1002/mrc.2557
  • Parent, A. S., Rasier, G., Matagne, V., Lomniczi, A., Lebrethon, M. C., Gérard, A., … Bourguignon, J. P. (2008). Oxytocin facilitates female sexual maturation through a glia-to-neuron signaling pathway. Endocrinology, 149, 1358–1365. doi:10.1210/en.2007-105410.1210/en.2007-1054
  • Pedersen, C. A., Ascher, J. A., Monroe, Y. L., & Prange, A. J., Jr (1982). Oxytocin induces maternal behaviour in virgin female rats. Science, 216, 648–650. doi:10.1126/science.707160510.1126/science.7071605
  • Postina, R., Kojro, E., & Fahrenholz, F. (1996). Separate agonist and peptide antagonist binding sites of the oxytocin receptor defined by their transfer into the V2 vasopressin receptor. Journal of Biological Chemistry, 271, 31593–31601. doi:10.1074/jbc.271.49.3159310.1074/jbc.271.49.31593
  • Ramachandran, G. N., & Sasisekharan, V. (1968). Conformation of polypeptides and proteins. Advances in Protein Chemistry, 23, 283–437. Retrieved from 10.1016/S0065-323310.1016/S0065-3233(08)60402-7
  • Rettori, V., Canteros, G., Renoso, R., Gimeno, M., & McCann, S. M. (1997). Oxytocin stimulates the release of luteinizing hormone-releasing hormone from medial basal hypothalamic explants by releasing nitric oxide. Proceedings of the National Academy of Sciences, 94, 2741–2744. doi:10.1073/pnas.94.6.274110.1073/pnas.94.6.2741
  • Rodziewicz-Motowidlo, S., Sikorska, E., Oleszczuk, M., & Czaplewski, C. (2008). Conformational studies of vasopressin and mesotocin using NMR spectroscopy and molecular modelling methods. Part II: Studies in the SDS micelle. Journal of Peptide Science, 14, 85–96. doi:10.1002/psc.91710.1002/(ISSN)1099-1387
  • Rose, J. P., Wu, C. K., Hsiao, C. D., Breslow, E., & Wang, B. C. (1996). Crystal structure of the neurophysin-oxytocin complex. Nature Structural & Molecular Biology, 3, 163–169. doi:10.1038/nsb0296-163
  • Sikorska, E., & Kwiatkowska, A. (2013). Micelle-bound conformations of neurohypophyseal hormone analogues modified with a Cα-disubstituted residue: NMR and molecular modelling studies. Journal of Biomolecular Structure & Dynamics, 31, 748–764. doi:10.1080/07391102.2012.709459
  • Sikorska, E., & Rodzeiwicz-Motowidlo, S. (2008). Conformational studies of vasopressin and mesotocin using NMR spectroscopy and molecular modelling methods. Part I: Studies in water. Journal of Peptide Science, 14, 76–84. doi:10.1002/psc.91810.1002/(ISSN)1099-1387
  • Ślusarz, M. J., Ślusarz, R., & Ciarkowski, J. (2006). Molecular dynamics simulation of human neurohypophyseal hormone receptors complexed with oxytocin – modeling of an activated state. Journal of Peptide Science, 12, 171–179. doi:10.1002/psc.71310.1002/(ISSN)1099-1387
  • Tarnowska, M., Liwo, A., Shenderovich, M. D., Liepiga, I., Golbraikh, A. A., Grzonka, Z., & Tempczyk, A. (1993). A molecular mechanics study of the effect of substitution in position 1 on the conformational space of the oxytocin/vasopressin ring. Journal of Computer-Aided Molecular Design, 7, 699–719. doi:10.1007/BF0012532710.1007/BF00125327
  • Turner, R. J., Matsoukas, J. M., & Moore, G. J. (1990). Tyrosinate fluorescence lifetimes for oxytocin and vasopressin in receptor-simulating environments: Relationship to biological activity and 1H-NMR data. Biochemical and Biophysical Research Communications, 171, 996–1001. doi:10.1016/0006-291X(90)90782-I10.1016/0006-291X(90)90782-I
  • Urry, D. W., Ohnishi, M., & Walter, R. (1970). Secondary structure of the cyclic moiety of the peptide hormone oxytocin and its deamino analog. Proceedings of the National Academy of Sciences, 66, 111–116. Retrieved from http://www.pnas.org/content/66/1/111.abstract10.1073/pnas.66.1.111
  • Urry, D. W., & Walter, R. W. (1971). Proposed Conformation of Oxytocin in Solution. Proceedings of the National Academy of Sciences, 68, 956–958. Retrieved from http://www.pnas.org/content/68/5/95610.1073/pnas.68.5.956
  • Vuister, G. W., & Bax, A. (1993). Quantitative J correlation: A new approach for measuring homonuclear three-bond J(HNH.alpha.) coupling constants in 15N-enriched proteins. Journal of the American Chemical Society, 115, 7772–7777. doi:10.1021/ja00070a02410.1021/ja00070a024
  • Wagner, G., Neuhaus, D., Worgotter, E., Vasak, M., Kagi, J. H. R., & Wuthrich, K. (1986). Nuclear magnetic resonance identification of “half-turn” and 310-helix secondary structure in rabbit liver metallothionein-2. Journal of Molecular Biology, 187, 131–135. doi:10.1016/0022-2836(86)90413-410.1016/0022-2836(86)90413-4
  • Walter, R. (1977). Identification of sites in oxytocin involved in uterine receptor recognition and activation. Federation Proceedings of the National Academy of Sciences of the United States of America of American Society for Experimental Biology, 36, 1872–1878. Retrieved from PMID: 192603
  • Walter, R., Prasad, K. U. M., Deslauriers, R., & Smith, I. C. P. (1973). Conformational studies of oxytocin, lysine vasopressin, arginine vasopressin, and arginine vasotocin by carbon-13 nuclear magnetic resonance spectroscopy. Proceedings of the National Academy of Sciences, 70, 2086–2090. Retrieved from http://www.pnas.org/content/70/7/2086.abstract10.1073/pnas.70.7.2086
  • Walter, R., Skala, G., & Smith, C. W. (1978). [5-Aspartic acid]-oxytocin: first 5-position neurohypophyseal hormone analog possessing significant biological activity. Journal of the American Chemical Society, 100, 972–973. doi:10.1021/ja00471a05310.1021/ja00471a053
  • Ward, D. J., Chen, Y., Platt, E., & Robson, B. (1991). Development and testing of protocols for computer-aided design of peptide drugs, using oxytocin. Journal of Theoretical Biology, 148, 193–227. doi:10.1016/S0022-5193(05)80341-810.1016/S0022-5193(05)80341-8
  • Wittelsberger, A., Patiny, L., Slaninova, J., Barberis, C., & Mutter, M. (2005). Introduction of a cis-prolyl mimic in position 7 of the peptide hormone oxytocin does not result in antagonistic activity. Journal of Medicinal Chemistry, 48, 6553–6562. doi:10.1021/jm049205z10.1021/jm049205z
  • Wood, S. P., Tickle, I. J., Treharne, A. M., Pitts, J. E., Mascarenhas, Y., Li, J. Y., … Wyssbrod, H. R. (1986). Crystal structure analysis of deamino-oxytocin: Conformational flexibility and receptor binding. Science, 232, 633–636. doi:10.1126/science.300833210.1126/science.3008332
  • Wuthrich, K. (1986). NMR of proteins and nucleic acids. New York, NY: Wiley.
  • Wüthrich, K., Billeter, M., & Braun, W. (1984). Polypeptide secondary structure determination by nuclear magnetic resonance observation of short proton–proton distances. Journal of Molecular Biology, 180, 715–740. doi:10.1016/0022-2836(84)90034-210.1016/0022-2836(84)90034-2

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.