1,199
Views
4
CrossRef citations to date
0
Altmetric
Articles

Insight into a molecular interaction force supporting peptide backbones and its implication to protein loops and folding

, , , &
Pages 1957-1972 | Received 25 Sep 2014, Accepted 02 Nov 2014, Published online: 22 Dec 2014

References

  • Agarwal, G., Rajavel, M., Gopal, B., & Srinivasan, N. (2009). Structure-based phylogeny as a diagnostic for functional characterization of proteins with a cupin fold. PLoS One, 4, e5736.10.1371/journal.pone.0005736
  • Amovilli, C., Barone, V., Cammi, R., Cancès, E., Cossi, M., Mennucci, B., … Tomasi, J. (1999). Recent advances in the description of solvent effects with the polarizable continuum model. Advances in Quantum Chemistry, 32, 227–261.10.1016/S0065-3276(08)60416-5
  • Asturiol, D., Duran, M., & Salvador, P. (2008). Intramolecular basis set superposition error effects on the planarity of benzene and other aromatic molecules: A solution to the problem. The Journal of Chemical Physics, 128, 144108.10.1063/1.2902974
  • Balabin, R. M. (2008). Enthalpy difference between conformations of normal alkanes: Intramolecular basis set superposition error (BSSE) in the case of n-butane and n-hexane. The Journal of Chemical Physics, 129, 164101.10.1063/1.2997349
  • Berardi, M. J., Shih, W. M., Harrison, S. C., & Chou, J. J. (2011). Mitochondrial uncoupling protein 2 structure determined by NMR molecular fragment searching. Nature, 476, 109–113.10.1038/nature10257
  • Bhaduri, A., Pugalenthi, G., & Sowdhamini, R. (2004). PASS2: An automated database of protein alignments organised as structural superfamilies. BMC Bioinformatics, 5, 35.10.1186/1471-2105-5-35
  • Birchall, L. S., Roy, S., Jayawarna, V., Hughes, M., Irvine, E., Okorogheye, G. T., … Edwards, A. A. (2011). Exploiting CH-π interactions in supramolecular hydrogels of aromatic carbohydrate amphiphiles. Chemical Science, 2, 1349–1355.10.1039/c0sc00621a
  • Cai, Y. D., & Chou, K. C. (1999). Artificial neural network model for predicting α-turn types. Analytical Biochemistry, 268, 407–409.10.1006/abio.1998.2992
  • Cai, Y. D., Feng, K. Y., & Li, Y. X. (2003). Support vector machine for predicting α-turn types. Peptides, 24, 629–630.10.1016/S0196-9781(03)00100-1
  • Cai, Y. D., Yu, H., & Chou, K. C. (1998). Prediction of beta-turns. Journal of Protein Chemistry, 17, 363–376.10.1023/A:1022559300504
  • Carlacci, L., & Chou, K. C. (1990a). Electrostatic interactions between loops and α-helices in four-helix bundle proteins. Protein Engineering, 4, 225–227.10.1093/protein/4.2.225
  • Carlacci, L., & Chou, K. C. (1990b). Monte Carlo method applied in the search for low energy conformations of ßaßaß structures. Biopolymers, 30, 135–150.10.1002/(ISSN)1097-0282
  • Carlacci, L., & Chou, K. C. (1991). New development on energetic approach to the packing in proteins. Journal of Computational Chemistry, 12, 410–415.10.1002/(ISSN)1096-987X
  • Carlacci, L., Chou, K. C., & Maggiora, G. M. (1991). A heuristic approach to predicting the tertiary structure of bovine somatotropin. Biochemistry, 30, 4389–4398.10.1021/bi00232a004
  • Chou, K. C. (1983). Identification of low-frequency modes in protein molecules. Biochemical Journal, 215, 465–469.
  • Chou, K. C. (1985). Low-frequency motions in protein molecules. Beta-sheet and beta-barrel. Biophysical Journal, 48, 289–297.10.1016/S0006-3495(85)83782-6
  • Chou, K. C. (1987). The biological functions of low-frequency vibrations (phonons). VI. A possible dynamic mechanism of allosteric transition in antibody molecules. Biopolymers, 26, 285–295.10.1002/(ISSN)1097-0282
  • Chou, K. C. (1988). Low-frequency collective motion in biomacromolecules and its biological functions. Biophysical Chemistry, 30, 3–48.10.1016/0301-4622(88)85002-6
  • Chou, K. C. (1989). Low-frequency resonance and cooperativity of hemoglobin. Trends in Biochemical Sciences, 14, 212–213.10.1016/0968-0004(89)90026-1
  • Chou, K. C. (1991). Reply from K.-C.Chou: The role of loops in stabilizing bundle motif protein structures. Protein Engineering, 4, 849–850.10.1093/protein/4.7.849-a
  • Chou, K. C. (1992). Energy-optimized structure of antifreeze protein and its binding mechanism. Journal of Molecular Biology, 223, 509–517.10.1016/0022-2836(92)90666-8
  • Chou, K. C. (1997a). Prediction of beta-turns in proteins. Journal of Peptide Research, 49, 120–144.
  • Chou, K. C. (1997b). Prediction and classification of α-turn types. Biopolymers, 42, 837–853.10.1002/(ISSN)1097-0282
  • Chou, K. C. (2000). Prediction of tight turns and their types in proteins. Analytical Biochemistry, 286, 1–16.10.1006/abio.2000.4757
  • Chou, K. C., & Blinn, J. R. (1997). Classification and prediction of beta-turn types. Journal of Protein Chemistry, 16, 575–595.10.1023/A:1026366706677
  • Chou, K. C., & Carlacci, L. (1991). Energetic approach to the folding of α/β barrels. Proteins: Structure, Function, and Genetics, 9, 280–295.10.1002/(ISSN)1097-0134
  • Chou, K. C., Carlacci, L., & Maggiora, G. M. (1990). Conformational and geometrical properties of idealized β-barrels in proteins. Journal of Molecular Biology, 213, 315–326.10.1016/S0022-2836(05)80193-7
  • Chou, K. C., Carlacci, L., Maggiora, G. M., Parodi, L. A., & Schulz, M. W. (1992). An energy-based approach to packing the 7-helix bundle of bacteriorhodopsin. Protein Science, 1, 810–827.10.1002/pro.v1:6
  • Chou, K. C., & Chen, N. Y. (1977). The biological functions of low-frequency phonons. Scientia Sinica, 20, 447–457.
  • Chou, K. C., Heckel, A., Némethy, G., Rumsey, S., Carlacci, L., & Scheraga, H. A. (1990). Energetics of the structure and chain tilting of antiparallel β-barrels in proteins. Proteins: Structure, Function, and Genetics, 8, 14–22.10.1002/(ISSN)1097-0134
  • Chou, J. J., Li, S., Klee, C. B., & Bax, A. (2001). Solution structure of Ca2+-calmodulin reveals flexible hand-like properties of its domains. Nature Structural Biology, 8, 990–997.10.1038/nsb1101-990
  • Chou, K. C., Maggiora, G. M., Nemethy, G., & Scheraga, H. A. (1988). Energetics of the structure of the four-alpha-helix bundle in proteins. Proceedings of the National Academy of Sciences, 85, 4295–4299.10.1073/pnas.85.12.4295
  • Chou, K. C., Maggiora, G. M., & Scheraga, H. A. (1992). Role of loop-helix interactions in stabilizing four-helix bundle proteins. Proceedings of the National Academy of Sciences, 89, 7315–7319.10.1073/pnas.89.16.7315
  • Chou, K. C., Nemethy, G., Pottle, M. S., & Scheraga, H. A. (1985). Folding of the twisted .beta.-sheet in bovine pancreatic trypsin inhibitor. Biochemistry, 24, 7948–7953.10.1021/bi00348a016
  • Chou, K. C., Nemethy, G., Pottle, M., & Scheraga, H. A. (1989). Energy of stabilization of the right-handed βαβ crossover in proteins. Journal of Molecular Biology, 205, 241–249.10.1016/0022-2836(89)90378-1
  • Chou, K. C., Nemethy, G., Rumsey, S., Tuttle, R. W., & Scheraga, H. A. (1985). Interactions between an α-helix and a β-sheet. Journal of Molecular Biology, 186, 591–609.10.1016/0022-2836(85)90133-0
  • Chou, K. C., Nemethy, G., Rumsey, S., Tuttle, R. W., & Scheraga, H. A. (1986). Interactions between two β-sheets energetics of β/β packing in proteins. Journal of Molecular Biology, 188, 641–649.10.1016/S0022-2836(86)80012-2
  • Chou, K. C., Nemethy, G., & Scheraga, H. A. (1983a). Effect of amino acid composition on the twist and the relative stability of parallel and antiparallel .beta.-sheets. Biochemistry, 22, 6213–6221.10.1021/bi00295a027
  • Chou, K. C., Nemethy, G., & Scheraga, H. A. (1983b). Role of interchain interactions in the stabilization of the right-handed twist of β-sheets. Journal of Molecular Biology, 168, 389–407.10.1016/S0022-2836(83)80025-4
  • Chou, K. C., Nemethy, G., & Scheraga, H. A. (1984). Energetic approach to the packing of .alpha.-helixes. 2. General treatment of nonequivalent and nonregular helixes. Journal of the American Chemical Society, 106, 3161–3170.10.1021/ja00323a017
  • Chou, K. C., Nemethy, G., & Scheraga, H. A. (1990). Energetics of interactions of regular structural elements in proteins. Accounts of Chemical Research, 23, 134–141.10.1021/ar00173a003
  • Chou, K. C., Pottle, M., Nemethy, G., Ueda, Y., & Scheraga, H. A. (1982). Structure of β-sheets. Journal of Molecular Biology, 162, 89–112.10.1016/0022-2836(82)90163-2
  • Chou, K. C., & Scheraga, H. A. (1982). Origin of the right-handed twist of beta-sheets of poly(LVal) chains. Proceedings of the National Academy of Sciences, 79, 7047–7051.10.1073/pnas.79.22.7047
  • Chou, K. C., & Zheng, C. (1992). Strong electrostatic loop-helix interactions in bundle motif protein structures. Biophysical Journal, 63, 682–688.10.1016/S0006-3495(92)81653-3
  • Cossi, M., & Barone, V. (1998). Analytical second derivatives of the free energy in solution by polarizable continuum models. The Journal of Chemical Physics, 109, 6246–6254.10.1063/1.477265
  • Cramer, C. J., & Bickelhaupt, F. (2003). Essentials of computational chemistry. Angewandte Chemie-International Edition in English, 42, 381–381.
  • Du, Q. S., Long, S. Y., Meng, J. Z., & Huang, R. B. (2012b). Empirical formulation and parameterization of cation–π interactions for protein modeling. Journal of Computational Chemistry, 33, 153–162.10.1002/jcc.v33.2
  • Du, Q.-S., Meng, J.-Z., Liao, S.-M., & Huang, R.-B. (2012a). Energies and physicochemical properties of cation–π interactions in biological structures. Journal of Molecular Graphics and Modelling, 34, 38–45.10.1016/j.jmgm.2011.12.002
  • Du, Q. S., Wang, Q. Y., Du, L. Q., Chen, D., & Huang, R. B. (2013). Theoretical study on the polar hydrogen-π (Hp-π) interactions between protein side chains. Chemistry Central Journal, 7, 92.10.1186/1752-153X-7-92
  • Du, Q.-S., Wang, S.-Q., & Huang, R.-B. (2010). Computational 3D structures of drug-targeting proteins in the 2009-H1N1 influenza A virus. Chemical Physics Letters, 485, 191–195.10.1016/j.cplett.2009.12.037
  • Du, Q.-S., Wei, H., & Huang, R.-B. (2011). Progress in structure-based drug design against influenza A virus. Expert Opinion on Drug Discovery, 6, 619–631.10.1517/17460441.2011.571671
  • Foresman, J. B., Keith, T. A., Wiberg, K. B., Snoonian, J., & Frisch, M. J. (1996). Solvent Effects. 5. Influence of cavity shape, truncation of electrostatics, and electron correlation on ab initio reaction field calculations. The Journal of Physical Chemistry, 100, 16098–16104.10.1021/jp960488j
  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., … Fox, D. J. (2010). Gaussian. Wallingford: Gaussian.
  • Gerritsen, M., Chou, K. C., Nemethy, G., & Scheraga, H. A. (1985). Energetics of multihelix interactions in protein folding: Application to myoglobin. Biopolymers, 24, 1271–1291.10.1002/(ISSN)1097-0282
  • Gordon, D. B., Marshall, S. A., & Mayot, S. L. (1999). Energy functions for protein design. Current Opinion in Structural Biology, 9, 509–513.10.1016/S0959-440X(99)80072-4
  • Guan, P. P., Zhou, W., & Yan, H. (2012). The relationship between geometric patterns of hydrogen bonds and periodic dinucleotides in nucleosome structures. Journal of Theoretical Biology, 313, 136–141.10.1016/j.jtbi.2012.08.019
  • Harrison, A., Pearl, F., Mott, R., Thornton, J., & Orengo, C. (2002). Quantifying the similarities within fold space. Journal of Molecular Biology, 323, 909–926.10.1016/S0022-2836(02)00992-0
  • Hughes, R. M., & Waters, M. L. (2006). Effects of lysine acetylation in a β-hairpin peptide: comparison of an amide-π and a cation-π interaction. Journal of the American Chemical Society, 128, 13586–13591.10.1021/ja0648460
  • Jahandideh, S., Hoseini, S., Jahandideh, M., Hoseini, A., & Disfani, F. M. (2009). γ-turn types prediction in proteins using the two-stage hybrid neural discriminant model. Journal of Theoretical Biology, 259, 517–522.10.1016/j.jtbi.2009.04.016
  • Jahandideh, S., Sarvestani, A. S., Abdolmaleki, P., Jahandideh, M., & Barfeie, M. (2007). γ-Turn types prediction in proteins using the support vector machines. Journal of Theoretical Biology, 249, 785–790.10.1016/j.jtbi.2007.09.002
  • Joseph, A. P., Srinivasan, N., & de Brevern, A. G. (2011). Improvement of protein structure comparison using a structural alphabet. Biochimie, 93, 1434–1445.10.1016/j.biochi.2011.04.010
  • Kabsch, W., & Sander, C. (1983). Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features. Biopolymers, 22, 2577–2637.10.1002/(ISSN)1097-0282
  • Krissinel, E., & Henrick, K. (2004). Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallographica, Section D: Biological Crystallography, 60, 2256–2268.10.1107/S0907444904026460
  • Kuhlman, B., Dantas, G., Ireton, G. C., Varani, G., Stoddard, B. L., & Baker, D. (2003). Design of a novel globular protein fold with atomic-level accuracy. Science, 302, 1364–1368.10.1126/science.1089427
  • Kumar, S., & Das, A. (2012). Effect of acceptor heteroatoms on π-hydrogen bonding interactions: A study of indole⋅⋅⋅thiophene heterodimer in a supersonic jet. The Journal of Chemical Physics, 137, 094309.10.1063/1.4748818
  • Lazaridis, T., & Karplus, M. (2000). Effective energy functions for protein structure prediction. Current Opinion in Structural Biology, 10, 139–145.10.1016/S0959-440X(00)00063-4
  • Lee, T. J., & Rice, J. E. (1988). An efficient closed-shell singles and doubles coupled-cluster method. Chemical Physics Letters, 150, 406–415.10.1016/0009-2614(88)80427-5
  • Li, X.-Q., & Fan, P. (2010). A duplex DNA model with regular inter-base-pair hydrogen bonds. Journal of Theoretical Biology, 266, 374–379.10.1016/j.jtbi.2010.07.002
  • Lovell, S. C., Davis, I. W., Arendall, W. B., de Bakker, P. I., Word, J. M., Prisant, M. G., … Richardson, D. C. (2003). Structure validation by Cα geometry: ϕ, ψ and Cβ deviation. Proteins: Structure, Function, and Bioinformatics, 50, 437–450.10.1002/prot.10286
  • Lu, G. (2000). TOP: A new method for protein structure comparisons and similarity searches. Journal of Applied Crystallography, 33, 176–183.10.1107/S0021889899012339
  • Machius, M., Declerck, N., Huber, R., & Wiegand, G. (1998). Activation of Bacillus licheniformis α-amylase through a disorder→order transition of the substrate-binding site mediated by a calcium–sodium–calcium metal triad. Structure, 6, 281–292.10.1016/S0969-2126(98)00032-X
  • Marti-Renom, M. A., Ilyin, V. A., & Sali, A. (2001). DBAli: A database of protein structure alignments. Bioinformatics, 17, 746–747.10.1093/bioinformatics/17.8.746
  • Mayer, I., & Valiron, P. (1998). Second order Mo̸ller–Plesset perturbation theory without basis set superposition error. The Journal of Chemical Physics, 109, 3360–3373.10.1063/1.476931
  • Miertuš, S., Scrocco, E., & Tomasi, J. (1981). Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects. Chemical Physics, 55, 117–129.10.1016/0301-0104(81)85090-2
  • Mizuguchi, K., Deane, C. M., Blundell, T. L., & Overington, J. P. (1998). HOMSTRAD: A database of protein structure alignments for homologous families. Protein Science, 7, 2469–2471.10.1002/pro.v7:11
  • Mróz, I. (1995). Theoretical consideration of the relation between hydrogen bond types and possible secondary structures of a polypeptide chain. Journal of Theoretical Biology, 175, 245–255.10.1006/jtbi.1995.0137
  • OuYang, B., Xie, S., Berardi, M. J., Zhao, X. M., Dev, J., Yu, W., Sun, B., & Chou, J. J. (2013). Unusual architecture of the p7 channel from hepatitis C virus. Nature, 498, 521–525.10.1038/nature12283
  • Palese, P., Tobita, K., Ueda, M., & Compans, R. W. (1974). Characterization of temperature sensitive influenza virus mutants defective in neuraminidase. Virology, 61, 397–410.10.1016/0042-6822(74)90276-1
  • Pauling, L., & Corey, R. B. (1951). The pleated sheet, a new layer configuration of polypeptide chains. Proceedings of the National Academy of Sciences, 37, 251–256.10.1073/pnas.37.5.251
  • Pauling, L., Corey, R. B., & Branson, H. R. (1951). The structure of proteins: Two hydrogen-bonded helical configurations of the polypeptide chain. Proceedings of the National Academy of Sciences, 37, 205–211.10.1073/pnas.37.4.205
  • Pavone, V., Gaeta, G., Lombardi, A., Nastri, F., & Maglio, O. (1996). Discovering protein secondary structures: Classification and description of isolated α-turns. Biopolymers, 38, 705–721.10.1002/(SICI)1097-0282(199606)38:6<705::AID-BIP3>3.0.CO;2-V
  • Perczel, A., Farkas, Ö., Jákli, I., Topol, I. A., & Csizmadia, I. G. (2003). Peptide models. XXXIII. Extrapolation of low-level Hartree-Fock data of peptide conformation to large basis set SCF, MP2, DFT, and CCSD(T) results. The Ramachandran surface of alanine dipeptide computed at various levels of theory. Journal of Computational Chemistry, 24, 1026–1042.10.1002/(ISSN)1096-987X
  • Pidaparti, R. M., Svintradze, D. V., Shan, Y., & Yokota, H. (2009). Optimization of hydrogen bonds for combined DNA/collagen complex. Journal of Theoretical Biology, 256, 149–156.10.1016/j.jtbi.2008.09.013
  • Purvis, G. D., III, & Bartlett, R. J. (1982). A full coupled-cluster singles and doubles model: The inclusion of disconnected triples. The Journal of Chemical Physics, 76, 1910–1918.10.1063/1.443164
  • Ramachandran, G., Ramakrishnan, C. t., & Sasisekharan, V. (1963). Stereochemistry of polypeptide chain configurations. Journal of Molecular Biology, 7, 95–99.10.1016/S0022-2836(63)80023-6
  • Richardson, J. S. (1981). The anatomy and taxonomy of protein structure. Advances of Protein Chemistry, 34, 167–339.10.1016/S0065-3233(08)60520-3
  • Scheraga, H. A., Chou, K. C., & Nemethy, G. (1982). Interactions between the fundamental structures of polypeptide chains. In R. Srinivasan & R. H. Sarma (Eds.), Conformation in Biology (pp. 1–10). Gilderland, NY: Adenine Press.
  • Schnell, J. R., & Chou, J. J. (2008). Structure and mechanism of the M2 proton channel of influenza A virus. Nature, 451, 591–595.10.1038/nature06531
  • Scuseria, G. E., Janssen, C. L., & Schaefer, H. F. (1988). An efficient reformulation of the closed-shell coupled cluster single and double excitation (CCSD) equations. The Journal of Chemical Physics, 89, 7382–7387.10.1063/1.455269
  • Scuseria, G. E., & Schaefer, H. F., III (1989). Is coupled cluster singles and doubles (CCSD) more computationally intensive than quadratic configuration interaction (QCISD)? The Journal of Chemical Physics, 90, 3700–3703.10.1063/1.455827
  • Sherrill, C. D., & Schaefer, H. F., III. (1999). The configuration interaction method: Advances in highly correlated approaches. Advances in Quantum Chemistry, 34, 143–269.10.1016/S0065-3276(08)60532-8
  • Shi, X., Hu, X., Li, S., & Liu, X. (2011). Prediction of β-turn types in protein by using composite vector. Journal of Theoretical Biology, 286, 24–30.10.1016/j.jtbi.2011.07.001
  • Sindzingre, P., Lhuillier, C., & Fouet, J. (2001). Proceedings of the 11th International Conference on Recent Progress in Many-Body Theories. Manchester, UK.
  • Sirois, S., Sing, T., & Chou, K. C. (2005). HIV-1 gp120 V3 loop for structure-based drug design. Current Protein and Peptide Science, 6, 413–422.10.2174/138920305774329359
  • Sirois, S., Touaibia, M., Chou, K. C., & Roy, R. (2007). Glycosylation of HIV-1 gp120 V3 loop: Towards the rational design of a synthetic carbohydrate vaccine. Current Medicinal Chemistry, 14, 3232–3242.10.2174/092986707782793826
  • Song, Q., Li, T., Cong, P., Sun, J., Li, D., & Tang, S. (2012). Predicting Turns in Proteins with a Unified Model. PLoS One, 7, e48389.10.1371/journal.pone.0048389
  • Sujatha, S., Balaji, S., & Srinivasan, N. (2001). PALI: a database of alignments and phylogeny of homologous protein structures. Bioinformatics, 17, 375–376.10.1093/bioinformatics/17.4.375
  • Thompson, T. B., Chou, K. C., & Zheng, C. (1995). Analysis of the loop-helix interaction in bundle motif protein structures Journal of Protein Chemistry, 14, 559–566.10.1007/BF01886882
  • Ting, D., Wang, G., Shapovalov, M., Mitra, R., Jordan, M. I., & Dunbrack, R. L., Jr (2010). Neighbor-dependent ramachandran probability distributions of amino acids developed from a hierarchical dirichlet process model. PLoS Computational Biology, 6, e1000763.10.1371/journal.pcbi.1000763
  • Tyagi, M., Bornot, A., Offmann, B., & de Brevern, A. G. (2009). Protein short loop prediction in terms of a structural alphabet. Computational Biology and Chemistry, 33, 329–333.10.1016/j.compbiolchem.2009.06.002
  • von Itzstein, M. (2007). The war against influenza: discovery and development of sialidase inhibitors. Nature Reviews Drug Discovery, 6, 967–974.10.1038/nrd2400
  • Wang, J. F., & Chou, K. C. (2009). Insight into the molecular switch mechanism of human Rab5a from molecular dynamics simulations. Biochemical and Biophysical Research Communications, 390, 608–612.10.1016/j.bbrc.2009.10.014
  • Wang, J. F., & Chou, K. C. (2010). Insights from studying the mutation-induced allostery in the M2 proton channel by molecular dynamics. Protein Engineering, Design & Selection, 23, 663–666.
  • Wang, S.-Q., Du, Q.-S., Huang, R.-B., & Zhang, D.-W. (2009). Insights from investigating the interaction of oseltamivir (Tamiflu) with neuraminidase of the 2009 H1N1 swine flu virus. Biochemical and Biophysical Research Communications, 386, 432–436.10.1016/j.bbrc.2009.06.016
  • Wang, J. F., Gong, K., Wei, D. Q., & Li, Y. X. (2009). Molecular dynamics studies on the interactions of PTP1B with inhibitors: from the first phosphate-binding site to the second one. Protein Engineering, Design & Selection, 22, 349–355.
  • Wen, Z. Z., Wang, Y. H., Yang, B., & Xie, M. Q. (2010). Roles of L5-7 loop in the structure and chaperone function of SsHSP14.1. Protein and Peptide Letters, 18, 275–281.
  • Wen, Z. Z., Wang, Y. H., Yang, B., & Xie, M. Q. (2011). Roles of L5-7 loop in the structure and chaperone function of SsHSP14.1. Protein and Peptide Letters, 18, 275–281.10.2174/092986611794578369
  • Wi, S., & Spano, J. (2011). Site-specific ϕ- and ψ-torsion angle determination in a uniformly/extensively 13C- and 15N-labeled peptide. Journal of Magnetic Resonance, 212, 431–439.10.1016/j.jmr.2011.08.019
  • Zhang, C. T., & Chou, K. C. (1997). Prediction of β-turns in proteins by 1-4 and 2-3 correlation model. Biopolymers, 41, 673–702.10.1002/(ISSN)1097-0282