174
Views
4
CrossRef citations to date
0
Altmetric
Articles

Unfolding stabilities of two structurally similar proteins as probed by temperature-induced and force-induced molecular dynamics simulations

, &
Pages 2037-2047 | Received 26 Aug 2014, Accepted 07 Nov 2014, Published online: 12 Dec 2014

References

  • Bae, E., & Phillips, G. N., Jr. (2004). Structures and analysis of highly homologous psychrophilic, mesophilic, and thermophilic adenylate kinases. Journal of Biological Chemistry, 279, 28202–28208.10.1074/jbc.M401865200
  • Berendsen, H. J. C., Postma, J. P. M., Van Gunsteren, W. F., Dinola, A., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81, 3684–3690.10.1063/1.448118
  • Berendsen, H. J. C., van der Spoel, D., & van Drunen, R. (1995). GROMACS: A message-passing parallel molecular dynamics implementation. Computer Physics Communications, 91, 43–56.10.1016/0010-4655(95)00042-E
  • Brandt, T., Kaar, J. L., Fersht, A. R., & Veprintsev, D. B. (2012). Stability of p53 homologs. PLoS One, 7, e47889.10.1371/journal.pone.0047889
  • Brannigan, J. A., & Wilkinson, A. J. (2002). Protein engineering 20 years on. Nature Reviews Molecular Cell Biology, 3, 964–970.10.1038/nrm975
  • Bussi, G., Donadio, D., & Parrinello, M. (2007). Canonical sampling through velocity rescaling. The Journal of Chemical Physics, 126, 014101.10.1063/1.2408420
  • Chang, J. Y., Kumar, T. K. S., & Yu, C. (1998). Unfolding and refolding of cardiotoxin III elucidated by reversible conversion of the native and scrambled species. Biochemistry, 37, 6745–6751.10.1021/bi9714565
  • Chang, J. Y., Lu, B. Y., Lin, C. C. J., & Yu, C. (2006). Fully oxidized scrambled isomers are essential and predominant folding intermediates of cardiotoxin-III. FEBS Letters, 580, 656–660.10.1016/j.febslet.2005.12.064
  • Daggett, V. (2002). Molecular dynamics simulations of the protein unfolding/folding reaction. Accounts of Chemical Research, 35, 422–429.10.1021/ar0100834
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98, 10089–10092.10.1063/1.464397
  • Day, R., Bennion, B. J., Ham, S., & Daggett, V. (2002). Increasing temperature accelerates protein unfolding without changing the pathway of unfolding. Journal of Molecular Biology, 322, 189–203.10.1016/S0022-2836(02)00672-1
  • Dolinsky, T. J., Nielsen, J. E., McCammon, J. A., & Baker, N. A. (2004). PDB2PQR: An automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations. Nucleic Acids Research, 32, W665–W667.10.1093/nar/gkh381
  • Dror, R. O., Dirks, R. M., Grossman, J. P., Xu, H., & Shaw, D. E. (2012). Biomolecular simulation: A computational microscope for molecular biology. Annual Review of Physical Chemistry, 41, 429–452.
  • Ferrara, P., Apostolakis, J., & Caflisch, A. (2002). Evaluation of a fast implicit solvent model for molecular dynamics simulations. Proteins: Structure, Function, and Genetics, 46, 24–33.10.1002/(ISSN)1097-0134
  • Gorai, B., & Sivaraman, T. (2013). Unfolding stabilities of two paralogous proteins from Naja naja naja (Indian cobra) as probed by molecular dynamics simulations. Toxicon, 72, 11–22.10.1016/j.toxicon.2013.05.024
  • Grishin, N. V. (2001). Fold change in evolution of protein structures. Journal of Structural Biology, 134, 167–185.10.1006/jsbi.2001.4335
  • Hegde, R. P., Rajagopalan, N., Doley, R., & Kini, R. M. (2009). Snake venom three-finger toxins. In S. P. Mackessy (Ed.), Handbook of Venoms and Toxins of Reptiles (pp. 287–302). Boca Raton, FL: CRC Press.
  • Hess, B. (2008). P-LINCS: A parallel linear constraint solver for molecular simulation. Journal of Chemical Theory and Computation, 4, 116–122.10.1021/ct700200b
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14, 33–38.10.1016/0263-7855(96)00018-5
  • Kini, R. M. (2002). Molecular moulds with multiple missions: Functional sites in three-finger toxins. Clinical and Experimental Pharmacology and Physiology, 29, 815–822.10.1046/j.1440-1681.2002.03725.x
  • Kini, R. M. (2011). Evolution of three-finger toxins – A versatile mini protein scaffold. Acta Chimica Slovenica, 58, 693–701.
  • Kini, R. M., & Doley, R. (2010). Structure, function and evolution of three-finger toxins: Mini proteins with multiple targets. Toxicon, 56, 855–867.10.1016/j.toxicon.2010.07.010
  • Kumar, T. K. S., Jayaraman, G., Lee, C. S., Arunkumar, A. I., Sivaraman, T., Samuel, D., & Yu, C. (1997). Secondary structure formation is the earliest structural event in the refolding of an all β-sheet protein. Journal of Biomolecular Structure & Dynamics, 15, 431–463.
  • Kumar, T. K. S., Jayaraman, G., Lee, C. S., Sivaraman, T., Lin, W. Y., & Yu, C. (1995). Identification of ‘molten globule’-like state in an all β-sheet protein. Biochemical and Biophysical Research Communications, 207, 536–543.10.1006/bbrc.1995.1221
  • Kundu, S., & Roy, D. (2008). Temperature-induced unfolding pathway of a type III antifreeze protein: Insight from molecular dynamics simulation. Journal of Molecular Graphics and Modelling, 27, 88–94.10.1016/j.jmgm.2008.03.002
  • Lane, T. J., Shukla, D., Beauchamp, K. A., & Pande, V. S. (2013). To milliseconds and beyond: Challenges in the simulation of protein folding. Current Opinion in Structural Biology, 23, 58–65.10.1016/j.sbi.2012.11.002
  • Leisola, M., & Turunen, O. (2007). Protein engineering: Opportunities and challenges. Applied Microbiology and Biotechnology, 75, 1225–1232.10.1007/s00253-007-0964-2
  • Leontyev, I. V., & Stuchebrukhov, A. A. (2012). Polarizable mean-field model of water for biological simulations with AMBER and CHARMM force fields. Journal of Chemical Theory and Computation, 8, 3207–3216.10.1021/ct300011h
  • Lindorff-Larsen, K., Piana, S., Palmo, K., Maragakis, P., Klepeis, J. L., Dror, R. O., & Shaw, D. E. (2010). Improved side-chain torsion potentials for the amber ff99SB protein force field. Proteins: Structure, Function, and Bioinformatics, 78, 1950–1958.
  • Marcheschi, R. J., Gronenberg, L. S., & Liao, J. C. (2013). Protein engineering for metabolic engineering: Current and next-generation tools. Biotechnology Journal, 8, 545–555.10.1002/biot.201200371
  • Merkley, E. D., Parson, W. W., & Daggett, V. (2010). Temperature dependence of the flexibility of thermophilic and mesophilic flavoenzymes of the nitroreductase fold. Protein Engineering, Design & Selection, 23, 327–336.
  • Murzin, A. G. (1998). How far divergent evolution goes in proteins. Current Opinion in Structural Biology, 8, 380–387.10.1016/S0959-440X(98)80073-0
  • Onufriev, A., Case, D. A., & Bashford, D. (2002). Effective born radii in the generalized born approximation: The importance of being perfect. Journal of Computational Chemistry, 23, 1297–1304.10.1002/(ISSN)1096-987X
  • Parrinello, M., & Rahman, A. (1981). Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics, 52, 7182–7190.10.1063/1.328693
  • Patel, H. V., Vyas, A. A., Vyas, K. A., Liu, Y. S., Chiang, C. M., Chi, L. M., & Wu, W. (1997). Heparin and heparan sulfate bind to snake cardiotoxin: Sulfated oligosaccharides as a potential target for cardiotoxin action. Journal of Biological Chemistry, 272, 1484–1492.10.1074/jbc.272.3.1484
  • Pirone, L., Esposito, C., Correale, S., Graziano, G., Di Gaetano, S., Vitagliano, L., & Pedone, E. (2013). Thermal and chemical stability of two homologous POZ/BTB domains of KCTD proteins characterized by a different oligomeric organization. BioMed Research International, 162674, 1–8.10.1155/2013/162674
  • Pucci, F., Dhanani, M., Dehouck, Y., & Rooman, M. (2014). Protein thermostability prediction within homologous families using temperature-dependent statistical potentials. PLoS One, 9, e91659.10.1371/journal.pone.0091659
  • Razvi, A., & Scholtz, J. M. (2006). Lessons in stability from thermophilic proteins. Protein Science, 15, 1569–1578.10.1110/(ISSN)1469-896X
  • Richa, T., & Sivaraman, T. (2012). OneG: A computational tool for predicting cryptic intermediates in the unfolding kinetics of proteins under native conditions. PLoS One, 7, e32465.10.1371/journal.pone.0032465
  • Rizzuti, B., & Daggett, V. (2013). Using simulations to provide the framework for experimental protein folding studies. Archives of Biochemistry and Biophysics, 531, 128–135.10.1016/j.abb.2012.12.015
  • Roux, B., & Simonson, T. (1990). Implicit solvent models. Biophysical Chemistry, 78, 1–20.
  • Russell, R. B., Saqi, M. A. S., Sayle, R. A., Bates, P. A., & Sternberg, M. J. E. (1997). Recognition of analogous and homologous protein folds: Analysis of sequence and structure conservation. Journal of Molecular Biology, 269, 423–439.10.1006/jmbi.1997.1019
  • Sangar, V., Blankenberg, D. J., Altman, N., & Lesk, A. M. (2007). Quantitative sequence-function relationships in proteins based on gene ontology. BMC Bioinformatics, 8(294), 1–15.
  • Scheraga, H. A., Khalili, M., & Liwo, A. (2007). Protein-folding dynamics: Overview of molecular simulation techniques. Annual Review of Physical Chemistry, 58, 57–83.10.1146/annurev.physchem.58.032806.104614
  • Shaw, W. V. (1987). Protein engineering. The design, synthesis and characterization of factitious proteins. Biochemical Journal, 246(1), 1–17.
  • Sivaraman, T. (1999). Investigation on the unfolding and folding kinetics of snake toxins from Taiwan cobra (Naja naja atra). Taiwan: National Tsing Hua University.
  • Sivaraman, T., Kumar, T. K. S., Chang, D. K., Lin, W. Y., & Yu, C. (1998). Events in the kinetic folding pathway of a small, all β-sheet protein. Journal of Biological Chemistry, 273, 10181–10189.10.1074/jbc.273.17.10181
  • Sivaraman, T., Kumar, T. K. S., Hung, K. W., & Yu, C. (2000). Comparison of the structural stability of two homologous toxins isolated from the Taiwan cobra (Naja naja atra) venom. Biochemistry, 39, 8705–8710.10.1021/bi992867j
  • Sivaraman, T., Kumar, T. K. S., Jayaraman, G., Han, C. C., & Yu, C. (1997). Characterization of a partially structured state in an all-β-sheet protein. Biochemical Journal, 321, 457–464.
  • Sivaraman, T., Kumar, T. K. S., Tu, Y. T., Peng, H. J., & Yu, C. (1999c). Structurally homologous toxins isolated from the Taiwan cobra (Naja naja atra) differ significantly in their structural stability. Archives of Biochemistry and Biophysics, 363, 107–115.10.1006/abbi.1998.1057
  • Sivaraman, T., Kumar, T. K. S., Tu, Y. T., Wang, W., Lin, W. Y., Chen, H. M., & Yu, C. (1999b). Secondary structure formation is the earliest structural event in the refolding of an all β-sheet protein. Biochemical and Biophysical Research Communications, 260, 284–288.10.1006/bbrc.1999.0901
  • Sivaraman, T., Kumar, T. K. S., & Yu, C. (1996). Destabilisation of native tertiary structural interactions is linked to helix-induction by 2,2,2-trifluoroethanol in proteins. International Journal of Biological Macromolecules, 19, 235–239.10.1016/S0141-8130(96)01132-4
  • Sivaraman, T., Kumar, T. K. S., & Yu, C. (1999a). Investigation of the structural stability of cardiotoxin analogue III from the Taiwan cobra by hydrogen-deuterium exchange kinetics. Biochemistry, 38, 9899–9905.10.1021/bi9901230
  • Szilágyi, A., & Závodszky, P. (2000). Structural differences between mesophilic, moderately thermophilic and extremely thermophilic protein subunits: Results of a comprehensive survey. Structure, 8, 493–504.10.1016/S0969-2126(00)00133-7
  • Vanhove, M., Houba, S., Lamotte-Brasseur, J., & Frere, J. M. (1995). Probing the determinants of protein stability: Comparison of class A β-lactamases. Biochemical Journal, 308, 859–864.
  • Vrahatis, M. N., Androulakis, G. S., Lambrinos, J. N., & Magoulas, G. D. (2000). A class of gradient unconstrained minimization algorithms with adaptive stepsize. Journal of Computational and Applied Mathematics, 114, 367–386.10.1016/S0377-0427(99)00276-9
  • Wang, T., & Wade, R. C. (2007). On the use of elevated temperature in simulations to study protein unfolding mechanisms. Journal of Chemical Theory and Computation, 3, 1476–1483.10.1021/ct700063c

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.