148
Views
4
CrossRef citations to date
0
Altmetric
Articles

Theoretical treatment of helix–coil transition of complexes DNA with two different ligands having different binding parameters

, , , &
Pages 201-205 | Received 01 Nov 2014, Accepted 18 Jan 2015, Published online: 27 Feb 2015

References

  • Badasyan, A., Tonoyan, Sh. A., Giacometti, A., Podgornik, R., Parsegian, V. A., Mamasakhlisov, Y. Sh., & Morozov, V. F. (2014). Unified description of solvent effects in the helix–coil transition. Physical Review E, 89, 022723–1–022723-10.
  • Barbi, M., Lepri, S., Peyrard, M., & Theodorakopoulos, N. (2003). Thermal denaturation of a helicoidal DNA model. Physical Review E, 68, 061909-1–061909-14.
  • Chalikian, T. (2003). Hydrophobic tendencies of polar groups as a major force in molecular recognition. Biopolymers, 70, 492–496.10.1002/(ISSN)1097-0282
  • Cule, D., & Hwa, T. (1997). Denaturation of heterogeneous DNA. Physical Review Letters, 79, 2375–2378.10.1103/PhysRevLett.79.2375
  • Dubins, D. N., Lee, A., Macgregor, R. B. Jr., & Chalikian, T. V. (2001). On the stability of double stranded nucleic acids. Journal of the American Chemical Society, 123, 9254–9259.10.1021/ja004309u
  • Frank-Kamenetskii, M. D. (1997). Biophysics of the DNA molecule. Physics Reports, 288, 13–60.10.1016/S0370-1573(97)00020-3
  • Garbett, N. C., Ragazzon, P. A., & Chaires, J. B. (2007). Circular dichroism to determine binding mode and affinity of ligand–DNA interactions. Nature Protocols, 2, 3166–3172.10.1038/nprot.2007.475
  • Garel, T., Monthus, C., & Orland, H. (2001). A simple model for DNA denaturation. Europhysics Letters, 55, 138–140.
  • Grigoryan, Z. A., Mamasakhlisov, Y. Sh., & Karapetian, A. T. (2014). Orientation order in DNA-containg polymer composites: The melting effect. National Academy of Sciences of Armenia Reports, 114, 123–129.
  • Guan, Y., Shi, R., Li, X., Zhao, M., & Li, Y. (2007). Multiple binding modes for dicationic hoechst 33258 to DNA. Journal of Physical Chemistry B, 111, 7336–7344.10.1021/jp066344e
  • Hayrapetyan, G. N., Iannelli, F., Lekscha, J., Morozov, V. F., Netz, R. R., & Mamasakhlisov, Y. Sh. (2014). Reentrant melting of RNA with quenched sequence randomness. Physical Review Letters, 113, 068101–1–068101-5.
  • Karapetian, A. T., Mehrabian, N. M., Terzikian, G. A., Vardevanian, P. O., Antonian, A. P., Borisova, O. F., & Frank-Kamenetskii, M. (1996). Theoretical treatment of melting of complexes of DNA with ligands having several types of binding sites on helical and single-stranded DNA. Journal of Biomolecular Structure & Dynamics, 14, 275–283.
  • Krishnamoorthy, G., Duportail, G., & Mely, Y. (2002). Structure and dynamics of condensed DNA probed by 1,1′-(4,4,8,8-Tetramethyl-4,8-diazaundecamethylene)bis[4-[[3- methylbenz-1,3-oxazol-2-yl]methylidine]-1,4-dihydroquinolinium] tetraiodide fluorescence. Biochemistry, 41, 15277–15287.10.1021/bi020440y
  • Larsson, A., Carlsson, C., Jonsson, M., & Albinsson, B. (1994). Characterization of the binding of the fluorescent dyes YO and YOYO to DNA by polarized light spectroscopy. Journal of the American Chemical Society, 116, 8459–8465.10.1021/ja00098a004
  • Lipscomb, L. A., Zhou, F. X., Presnell, S. R., Woo, R. J., Peek, M. E., Plaskon, R. R., & Williams, L. D. (1996). Structure of DNA-porphyrin complex. Biochemistry, 35, 2818–2823.10.1021/bi952443z
  • Mikulecky, P. J., & Feig, A. L. (2002). Cold denaturation of the hammerhead ribozyme. Journal of the American Chemical Society, 124, 890–891.10.1021/ja016878n
  • Mikulecky, P. J., & Feig, A. L. (2004). Heat capacity changes in RNA folding: Application of perturbation theory to hammerhead ribozyme cold denaturation. Nucleic Acids Research, 32, 3967–3976.10.1093/nar/gkh723
  • Munoz, V., & Serrano, L. (1997). Development of the multiple sequence approximation within the AGADIR model of alpha–helix formation: Comparison with Zimm–Bragg and Lifson-Roig formalisms. Biopolymers, 41, 495–509.10.1002/(ISSN)1097-0282
  • Nelson, S. M., Ferguson, L. R., & Denny, W. A. (2007). Non-covalent ligand/DNA interactions: Minor groove binding agents. Mutation Research, 623, 24–40.10.1016/j.mrfmmm.2007.03.012
  • Niidome, T., Ohmori, N., Ichinose, A., Wada, A., Mihara, H., Hirayama, T., & Aoyagi, H. (1996). Binding of cationic a-helical peptides to plasmid DNA and their gene transfer abilities into cells. Journal of Biological Chemistry, 272, 15307–15312.
  • Poland, D., & Scheraga, H. A. (1966). Phase transition in one dimension and the helix–coil transition in polyamino acids. Journal of Chemical Physics, 45, 1456–1464.10.1063/1.1727785
  • Poland, D. C., & Scheraga, H. A. (1970). The theory of helix–coil transition. New York, NY: Academic Press.
  • Privalov, P. L. (1990). Cold denaturation of protein. Critical Reviews in Biochemistry and Molecular Biology, 25, 281–306.10.3109/10409239009090612
  • Reddy, B. S., Sharma, S. K., & Lown, J. W. (2001). Recent developments in sequence selective minor groove DNA effectors. Current Medicinal Chemistry, 8, 475–508.
  • Reha, D., Kabelac, M., Ryjacek, F., Sponer, J., Sponer, J. E., Elstner, M., … Hobza, P. (2002). Intercalators. 1. Nature of stacking interactions between intercalators (ethidium, daunomycin, ellipticine, and 4′,6-diaminide-2-phenylindole) and DNA base pairs. Ab initio quantum chemical, density functional theory, and empirical potential study. Journal of the American Chemical Society, 124, 3366–3376.10.1021/ja011490d
  • Takano, M., Nagayama, K., & Suyama, A. (2001). Investigating a link between all-atom model simulation and the Ising-based theory on the helix–coil transition: Equilibrium statistical mechanics. Journal of Chemical Physics, 116, 2219–2228.
  • Vedenov, A. A., Dykhne, A. M., & Frank-Kamenetskii, M. D. (1971). The helix–coil transition in DNA. Uspekhi Fizicheskikh Nauk, 105, 479–519.10.3367/UFNr.0105.197111d.0479
  • Wartell, R. M., & Benight, A. S. (1985). Thermal denaturation of DNA molecules: A comparison of theory with experiment. Physics Reports, 126, 67–107.10.1016/0370-1573(85)90060-2
  • Zimmer, Ch., & Wahnert, U. (1986). Nonintercalating DNA-binding ligands: Specificity of the interaction and their use as tools in biophysical, biochemical and biological investigations of the genetic material. Progress in Biophysics and Molecular Biology, 47, 31–112.10.1016/0079-6107(86)90005-2

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.