813
Views
52
CrossRef citations to date
0
Altmetric
Articles

Role of solvent properties of aqueous media in macromolecular crowding effects

, , , , &
Pages 92-103 | Received 12 Nov 2014, Accepted 20 Jan 2015, Published online: 26 Feb 2015

References

  • Ab Rani, M. A., Brant, A., Crowhurst, L., Dolan, A., Lui, M., Hassan, N. H., ... Wilding, R. (2011). Understanding the polarity of ionic liquids. Physical Chemistry Chemical Physics, 13, 16831–16840. doi:10.1039/c1cp21262a
  • Arnold, K., Herrmann, A., Pratsch, L., & Gawrisch, K. (1985). The dielectric properties of aqueous solutions of poly(ethylene glycol) and their influence on membrane structure. Biochimica et Biophysica Acta (BBA) - Biomembranes, 815, 515–518.10.1016/0005-2736(85)90381-5
  • Assarsson, A., Linse, S., & Cabaleiro-Lago, C. (2014). Effects of polyamino acids and polyelectrolytes on amyloid β fibril formation. Langmuir, 30, 8812–8818. doi:10.1021/la501414j
  • Ben-Naim, A. (2003). Hydrophobic hydrophilic phenomena in biochemical processes. Biophysical Chemistry, 105, 183–193. doi:S0301462203000887 [pii]10.1016/S0301-4622(03)00088-7
  • Benton, L. A., Smith, A. E., Young, G. B., & Pielak, G. J. (2012). Unexpected effects of macromolecular crowding on protein stability. Biochemistry, 51, 9773–9775. doi:10.1021/bi300909q
  • Bismuto, E., Martelli, P. L., De Maio, A., Mita, D. G., Irace, G., & Casadio, R. (2002). Effect of molecular confinement on internal enzyme dynamics: Frequency domain fluorometry and molecular dynamics simulation studies. Biopolymers, 67, 85–95.10.1002/(ISSN)1097-0282
  • Bloustine, J., Virmani, T., Thurston, G. M., & Fraden, S. (2006). Light scattering and phase behavior of lysozyme-poly(ethylene glycol) mixtures. Physical Review Letters, 96, 087803. doi:10.1103/PhysRevLett.96.08780310.1103/PhysRevLett.96.087803
  • Breydo, L., Reddy, K. D., Piai, A., Felli, I. C., Pierattelli, R., & Uversky, V. N. (2014). The crowd you’re in with: Effects of different types of crowding agents on protein aggregation. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 1844, 346–357. doi:10.1016/j.bbapap.2013.11.004
  • Canchi, D. R., & García, A. E. (2013). Cosolvent effects on protein stability. Annual Review of Physical Chemistry, 64, 273–293. doi:10.1146/annurev-physchem-040412-110156
  • Crowley, P. B., Brett, K., & Muldoon, J. (2008). NMR spectroscopy reveals cytochromec–poly(ethylene glycol) interactions. ChemBioChem, 9, 685–688. doi:10.1002/cbic.200700603
  • Despa, F., Fernández, A., & Berry, R. S. (2004). Dielectric modulation of biological water. Physical Review Letters, 93, 228104. doi:10.1103/PhysRevLett.93.22810410.1103/PhysRevLett.93.228104
  • Du, F., Zhou, Z., Mo, Z. Y., Shi, J. Z., Chen, J., & Liang, Y. (2006). Mixed macromolecular crowding accelerates the refolding of rabbit muscle creatine kinase: Implications for protein folding in physiological environments. Journal of Molecular Biology, 364, 469–482. doi:S0022-2836(06)01207-1 [pii]10.1016/j.jmb.2006.09.018
  • Eggers, D. K., & Valentine, J. S. (2001a). Crowding and hydration effects on protein conformation: A study with sol–gel encapsulated proteins. Journal of Molecular Biology, 314, 911–922.10.1006/jmbi.2001.5166
  • Eggers, D. K., & Valentine, J. S. (2001b). Molecular confinement influences protein structure and enhances thermal protein stability. Protein Science, 10, 250–261.10.1110/ps.36201
  • Elcock, A. H. (2010). Models of macromolecular crowding effects and the need for quantitative comparisons with experiment. Current Opinion in Structural Biology, 20, 196–206. doi:S0959-440X(10)00011-4 [pii];10.1016/j.sbi.2010.01.008
  • Hansch, C., & Leo, A. (1995). Exploring QSAR: Fundamentals and applications in chemistry and biology. Washington, DC: American Chemical Society.
  • Harada, R., Sugita, Y., & Feig, M. (2012). Protein crowding affects hydration structure and dynamics. Journal of the American Chemical Society, 134, 4842–4849. doi:10.1021/Ja211115q
  • Hatters, D. M., Minton, A. P., & Howlett, G. J. (2002). Macromolecular crowding accelerates amyloid formation by human apolipoprotein C-II. Journal of Biological Chemistry, 277, 7824–7830.10.1074/jbc.M110429200
  • Kamlet, M. J., & Taft, R. W. (1976). The solvatochromic comparison method. I. The beta-scale of solvent hydrogen-bond acceptor (HBA) basicities. Journal of the American Chemical Society, 98, 377–383.10.1021/ja00418a009
  • Kamlet, M. J., Abboud, J.-L. M., & Taft, R. W. (1977). The solvatochromic comparison method. 6. The pi* scale of solvent polarities. Journal of the American Chemical Society, 99, 6027–6038.10.1021/ja00460a031
  • Kamlet, M. J., Abboud, J.-L. M., Abraham, M. H., & Taft, R. W. (1983). Linear solvation energy relationships. 23. A comprehensive collection of the solvatochromic parameters, pi*, alpha, and beta, and some methods for simplifying the generalized solvatochromic equation. The Journal of Organic Chemistry, 48, 2877–2887.10.1021/jo00165a018
  • Kim, I. W., Jang, M. D., Ryu, Y. K., Cho, E. H., Lee, Y. K., & Park, J. H. (2002). Dipolarity, hydrogen-bond basicity and hydrogen-bond acidity of aqueous poly(ethylene glycol) solutions. Analytical Sciences, 18, 1357–1360.10.2116/analsci.18.1357
  • King, J. T., Arthur, E. J., Brooks 3rd, C. L., & Kubarych, K. J. (2014). Crowding induced collective hydration of biological macromolecules over extended distances. Journal of the American Chemical Society, 136, 188–194. doi:10.1021/ja407858c
  • Knowles, D. B., LaCroix, A. S., Deines, N. F., Shkel, I., & Record Jr., M. T. (2011). Separation of preferential interaction and excluded volume effects on DNA duplex and hairpin stability. Proceedings of the National Academy of Sciences, 108, 12699–12704. doi:1103382108 [pii]
  • Kulkarni, A. M., Chatterjee, A. P., Schweizer, K. S., & Zukoski, C. F. (2000). Effects of polyethylene glycol on protein interactions. The Journal of Chemical Physics, 113, 9863–9873. doi:10.1063/1.1321042
  • Lansbury Jr., P. T. (1999). Evolution of amyloid: What normal protein folding may tell us about fibrillogenesis and disease. Proceedings of the National Academy of Sciences, 96, 3342–3344.10.1073/pnas.96.7.3342
  • Lee, C. F., Bird, S., Shaw, M., Jean, L., & Vaux, D. J. (2012). Combined effects of agitation, macromolecular crowding, and interfaces on amyloidogenesis. Journal of Biological Chemistry, 287, 38006–38019. doi:10.1074/jbc.M112.400580
  • Ma, Q., Hu, J. Y., Chen, J., & Liang, Y. (2013). The role of crowded physiological environments in prion and prion-like protein aggregation. International Journal of Molecular Sciences, 14, 21339–21352. doi:10.3390/ijms141121339
  • Madeira, P. P., Bessa, A., Álvares-Ribeiro, L., Aires-Barros, M. R., Reis, C. A., Rodrigues, A. E., & Zaslavsky, B. Y. (2012). Salt effects on solvent features of coexisting phases in aqueous polymer/polymer two-phase systems. Journal of Chromatography A, 1229, 38–47. doi:S0021-9673(12)00112-4 [pii] 10.1016/j.chroma.2012.01.029
  • Madeira, P. P., Bessa, A., Alvares-Ribeiro, L., Raquel Aires-Barros, M., Rodrigues, A. E., Uversky, V. N., & Zaslavsky, B. Y. (2014). Amino acid/water interactions study: A new amino acid scale. Journal of Biomolecular Structure & Dynamics, 32, 959–968. doi:10.1080/07391102.2013.800994
  • Madeira, P. P., Bessa, A., Teixeira, M. A., Álvares-Ribeiro, L., Aires-Barros, M. R., Rodrigues, A. E., & Zaslavsky, B. Y. (2013). Study of organic compounds-water interactions by partition in aqueous two-phase systems. Journal of Chromatography A, 1322, 97–104. doi:S0021-9673(13)01723-8 [pii] 10.1016/j.chroma.2013.10.085
  • Madeira, P. P., Reis, C. A., Rodrigues, A. E., Mikheeva, L. M., & Zaslavsky, B. Y. (2010). Solvent properties governing solute partitioning in polymer/polymer aqueous two-phase systems: Nonionic compounds. The Journal of Physical Chemistry B, 114, 457–462. doi:10.1021/jp907346s
  • Madeira, P. P., Teixeira, J. A., Macedo, E. A., Mikheeva, L. M., & Zaslavsky, B. Y. (2008). “On the Collander equation”: Protein partitioning in polymer/polymer aqueous two-phase systems. Journal of Chromatography A, 1190, 39–43. doi:S0021-9673(08)00441-X [pii] 10.1016/j.chroma.2008.03.003
  • Marcus, Y. (1993). The properties of organic liquids that are relevant to their use as solvating solvents. Chemical Society Reviews, 22, 409–416. doi:10.1039/Cs9932200409
  • Martín, I., Celaya, G., Alfonso, C., Moro, F., Rivas, G., & Muga, A. (2014). Crowding activates ClpB and enhances its association with DnaK for efficient protein aggregate reactivation. Biophysical Journal, 106, 2017–2027. doi:10.1016/j.bpj.2014.03.042
  • Miklos, A. C., Sarkar, M., Wang, Y., & Pielak, G. J. (2011). Protein crowding tunes protein stability. Journal of the American Chemical Society, 133, 7116–7120. doi:10.1021/ja200067p
  • Minton, A. P. (2000a). Implications of macromolecular crowding for protein assembly. Current Opinion in Structural Biology, 10, 34–39.10.1016/S0959-440X(99)00045-7
  • Minton, A. P. (2000b). Protein folding: Thickening the broth. Current Biology, 10, R97–R99.10.1016/S0960-9822(00)00301-8
  • Morar, A. S., Olteanu, A., Young, G. B., & Pielak, G. J. (2001). Solvent-induced collapse of alpha-synuclein and acid-denatured cytochrome c. Protein Science, 10, 2195–2199.
  • Munishkina, L. A., Cooper, E. M., Uversky, V. N., & Fink, A. L. (2004). The effect of macromolecular crowding on protein aggregation and amyloid fibril formation. Journal of Molecular Recognition, 17, 456–464.10.1002/(ISSN)1099-1352
  • Munishkina, L. A., Ahmad, A., Fink, A. L., & Uversky, V. N. (2008). Guiding protein aggregation with macromolecular crowding. Biochemistry, 47, 8993–9006. doi:10.1021/bi8008399
  • Munishkina, L. A., Fink, A. L., & Uversky, V. N. (2008). Concerted action of metals and macromolecular crowding on the fibrillation of α-synuclein. Protein and Peptide Letters, 15, 1079–1085.10.2174/092986608786071102
  • Nakano, S., Miyoshi, D., & Sugimoto, N. (2014). Effects of molecular crowding on the structures, interactions, and functions of nucleic acids. Chemical Reviews, 114, 2733–2758. doi:10.1021/cr400113m
  • Phillip, Y., & Schreiber, G. (2013). Formation of protein complexes in crowded environments – From in vitro to in vivo. FEBS Letters, 587, 1046–1052. doi:S0014-5793(13)00026-4 [pii] 10.1016/j.febslet.2013.01.007
  • Picó, G., Bassani, G., Farruggia, B., & Nerli, B. (2007). Calorimetric investigation of the protein-flexible chain polymer interactions and its relationship with protein partition in aqueous two-phase systems. International Journal of Biological Macromolecules, 40, 268–275. doi:S0141-8130(06)00247-9 [pii]; 10.1016/j.ijbiomac.2006.08.008
  • Politi, R., & Harries, D. (2010). Enthalpically driven peptide stabilization by protective osmolytes. Chemical Communications, 46, 6449–6451. doi:10.1039/c0cc01763a
  • Reichardt, C., Harbusch-Görnert, E., & SchWäfer, G. (1988). Über Pyridinium-N-phenolat-Betaine und ihre Verwendung zur Charakterisierung der Polarität von Lösungsmitteln, XI. Herstellung und UV/VIS-spektroskopische Eigenschaften eines wasserlöslichen Carboxylat-substituierten Pyridinium-N-phenolat-Betainfarbstoffs [About pyridinium-N- phenoxide betaines and their use to characterize the polarity of solvents. XI. Preparation and UV/VIS spectroscopic properties of a water-soluble carboxylate-substituted pyridinium N-phenoxide betaine dye]. Liebigs Annalen der Chemie, 8, 839–844.10.1002/(ISSN)1099-0690
  • Sarkar, M., Lu, J., & Pielak, G. J. (2014). Protein crowder charge and protein stability. Biochemistry, 53, 1601–1606. doi:10.1021/bi4016346
  • Shtilerman, M. D., Ding, T. T., & Lansbury Jr., P. T. (2002). Molecular crowding accelerates fibrillization of α-synuclein: Could an increase in the cytoplasmic protein concentration induce parkinson’s disease? Biochemistry, 41, 3855–3860.10.1021/bi0120906
  • Sukenik, S., Sapir, L., Gilman-Politi, R., & Harries, D. (2013). Diversity in the mechanisms of cosolute action on biomolecular processes. Faraday Discussions, 160, 225–237; discussion 311-227.10.1039/c2fd20101a
  • Taft, R. W., & Kamlet, M. J. (1976). The solvatochromic comparison method. 2. The alpha-scale of solvent hydrogen-bond donor (HBD) acidities. Journal of the American Chemical Society, 98, 2886–2894.10.1021/ja00426a036
  • Uversky, V. N., Cooper, E. M., Bower, K. S., Li, J., & Fink, A. L. (2002). Accelerated α-synuclein fibrillation in crowded milieu. FEBS Letters, 515, 99–103.10.1016/S0014-5793(02)02446-8
  • Wang, Y., Sarkar, M., Smith, A. E., Krois, A. S., & Pielak, G. J. (2012). Macromolecular crowding and protein stability. Journal of the American Chemical Society, 134, 16614–16618. doi:10.1021/ja305300m
  • Yamin, G., Glaser, C. B., Uversky, V. N., & Fink, A. L. (2003). Certain metals trigger fibrillation of methionine-oxidized-synuclein. Journal of Biological Chemistry, 278, 27630–27635. doi:10.1074/jbc.M303302200M303302200 [pii]
  • Yamin, G., Munishkina, L. A., Karymov, M. A., Lyubchenko, Y. L., Uversky, V. N., & Fink, A. L. (2005). Forcing nonamyloidogenic β-synuclein to fibrillate. Biochemistry, 44, 9096–9107.10.1021/bi048778a
  • Zaslavsky, B. (1994). Aqueous two-phase partitioning: Physical chemistry and bioanalytical applications. New York, NY: Marcel Dekker.
  • Zhou, B. R., Liang, Y., Du, F., Zhou, Z., & Chen, J. (2004). Mixed macromolecular crowding accelerates the oxidative refolding of reduced, denatured lysozyme: Implications for protein folding in intracellular environments. Journal of Biological Chemistry, 279, 55109–55116. doi:M409086200 [pii] 10.1074/jbc.M409086200
  • Zhou, H. X., Rivas, G., & Minton, A. P. (2008). Macromolecular crowding and confinement: Biochemical, biophysical, and potential physiological consequences. Annual Review of Biophysics, 37, 375–397. doi:10.1146/annurev.biophys.37.032807.125817

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.