542
Views
24
CrossRef citations to date
0
Altmetric
Articles

Multi-drug resistance profile of PR20 HIV-1 protease is attributed to distorted conformational and drug binding landscape: molecular dynamics insights

, , &
Pages 135-151 | Received 28 Oct 2014, Accepted 08 Feb 2015, Published online: 27 Mar 2015

References

  • Agniswamy, J., Shen, C. H., Aniana, A., Sayer, J. M., Louis, J. M., & Weber, I. T. (2012). HIV-1 protease with 20 mutations exhibits extreme resistance to clinical inhibitors through coordinated structural rearrangements. Biochemistry, 51, 2819–2828.
  • Agniswamy, J., Shen, C. H., Wang, Y. F., Ghosh, A. K., Rao, K. V., Xu, C. X., … Weber, I. T. (2013). Extreme multidrug resistant HIV-1 protease with 20 mutations is resistant to novel protease inhibitors with P1ʹ-pyrrolidinone or P2-tris-tetrahydrofuran. Journal of Medicinal Chemistry, 56, 4017–4027.
  • Ahmed, S. M., Kruger, H. G., Govender, T., Maguire, G. E. M., Sayed, Y., Ibrahim, M. A. A., … Soliman, M. E. S. (2013). Comparison of the molecular dynamics and calculated binding free energies for nine FDA-approved HIV-1 PR drugs against subtype B and C-SA HIV PR. Chemical Biology & Drug Design, 81, 208–218.
  • Ahmed, S. M., Maguire, G. E. M., Kruger, H. G., & Govender, T. (2014). The impact of active site mutations of South African HIV PR on drug resistance: Insight from molecular dynamics simulations, binding free energy and per-residue footprints. Chemical Biology & Drug Design, 83, 472–481.
  • Bauer-Mehren, A. (2013) Integration of genomic information with biological networks using Cytoscape. Methods in Molecular Biology (Clifton, N.J.), 1021, 37–61.
  • Bennett, D. E., Camacho, R. J., Otelea, D., Kuritzkes, D. R., Fleury, H., Kiuchi, M., … Shafer, R. W. (2009). Drug resistance mutations for surveillance of transmitted HIV-1 drug-resistance: 2009 update. PloS One, 4, e4724.
  • Bhakat, S., Martin, A. J. M., & Soliman, M. E. S. (2014). An integrated molecular dynamics, principal component analysis and residue interaction network approach reveals the impact of M184V mutation on HIV reverse transcriptase resistance to lamivudine. Molecular Biosystems, 10, 2215–2228.
  • Brik, A. & Wong, C. H. (2003). HIV-1 protease: Mechanism and drug discovery. Organic & Biomolecular Chemistry, 1, 5–14.
  • Case, D. A., Cheatham, T. E., Darden, T., Gohlke, H., Luo, R., Merz, K. M., … Woods, R. J. (2005). The Amber biomolecular simulation programs. Journal of Computational Chemistry, 26, 1668–1688.
  • Doncheva, N. T., Klein, K., Domingues, F. S., & Albrecht, M. (2011). Analyzing and visualizing residue networks of protein structures. Trends in Biochemical Sciences, 36, 179–182.
  • Doss, C. G. P., Rajith, B., Chakraboty, C., Balaji, V., Magesh, R., Gowthami, B., … Das, M. (2014). In silico profiling and structural insights of missense mutations in RET protein kinase domain by molecular dynamics and docking approach. Molecular Biosystems, 10, 421–436.
  • Flexner, C. (2007). HIV drug development: The next 25 years. Nature Reviews Drug Discovery, 6, 959–966.
  • Foulkes-Murzycki, J. E., Rosi, C., Yilmaz, N. K., Shafer, R. W., & Schiffer, C. A. (2013). Cooperative effects of drug-resistance mutations in the flap region of HIV-1 protease. ACS Chemical Biology, 8, 513–518.
  • Freedberg, D. I., Ishima, R., Jacob, J., Wang, Y.-X., Kustanovich, I., Louis, J. M., & Torchia, D. A. (2002). Rapid structural fluctuations of the free HIV protease flaps in solution: Relationship to crystal structures and comparison with predictions of dynamics calculations. Protein Science, 11, 221–232.
  • Heal, J. W., Jimenez-Roldan, J. E., Wells, S. A., Freedman, R. B., & Romer, R. A. (2012). Inhibition of HIV-1 protease: The rigidity perspective. Bioinformatics, 28, 350–357.
  • Heaslet, H., Rosenfeld, R., Giffin, M., Lin, Y.-C., Tam, K., Torbett, B. E., … Stout, C. D. (2007). Conformational flexibility in the flap domains of ligand-free HIV protease. Acta Crystallographica Section D-Biological Crystallography, 63, 866–875.
  • Hornak, V., Okur, A., Rizzo, R. C., & Simmerling, C. (2006a). HIV-1 protease flaps spontaneously open and reclose in molecular dynamics simulations. Proceedings of the National Academy of Sciences United States of America, 103, 915–920.
  • Hornak, V., Okur, A., Rizzo, R. C., & Simmerling, C. L. (2006b) Flap structure and dynamics in HIV-1 protease simulations. Abstracts of Papers of the American Chemical Society, 231, 915–920.
  • Hornak, V., Okur, A., Rizzo, R. C., & Simmerling, C. (2006c). HIV-1 protease flaps spontaneously close to the correct structure in simulations following manual placement of an inhibitor into the open state. Journal of the American Chemical Society, 128, 2812–2813.
  • Hornak, V., & Simmerling, C. (2007). Targeting structural flexibility in HIV-1 protease inhibitor binding. Drug Discovery Today, 12, 132–138.
  • Kamaraj, B., & Purohit, R. (2013). In silico screening and molecular dynamics simulation of disease-associated nsSNP in TYRP1 gene and its structural consequences in OCA3. Biomed Research International, 2012, 1–13.
  • Karthik, S., & Senapati, S. (2011). Dynamic flaps in HIV-1 protease adopt unique ordering at different stages in the catalytic cycle. Proteins-Structure Function and Bioinformatics, 79, 1830–1840.
  • Karubiu, W., Bhakat, S., & Soliman, M. S. (2014). Compensatory role of double mutation N348I/M184V on nevirapine binding landscape: Insight from molecular dynamics simulation. Protein Journal, 5, 1–15.
  • Leonis, G., Steinbrecher, T., & Papadopoulos, M. G. (2013). A contribution to the drug resistance mechanism of darunavir, amprenavir, indinavir, and saquinavir complexes with HIV-1 protease due to flap mutation 150V: A systematic MM-PBSA and thermodynamic integration study. Journal of Chemical Information and Modeling, 53, 2141–2153.
  • Liu, F. L., Kovalevsky, A. Y., Tie, Y. F., Ghosh, A. K., Harrison, R. W., & Weber, I. T. (2008). Effect of flap mutations on structure of HIV-1 protease and inhibition by saquinavir and darunavir. Journal of Molecular Biology, 381, 102–115.
  • Makatini, M., Petzold, K., Alves, C., Arvidsson, P., Honarparvar, B., Govender, P., … Soliman, M. (2013). Synthesis, 2D-NMR and molecular modelling studies of pentacycloundecane. Journal of Enzyme Inhibition and Medicinal Chemistry, 28, 78–88.
  • Mehellou, Y. & De Clercq, E. (2010). Twenty-six years of anti-HIV drug discovery: Where do we stand and where do we go? Journal of Medicinal Chemistry, 53, 521–538.
  • Mittal, S., Bandaranayake, R. M., King, N. M., Prabu-Jeyabalan, M., Nalam, M. N. L., Nalivaika, E. A., … Schiffer, C. A. (2013). Structural and thermodynamic basis of amprenavir/darunavir and atazanavir resistance in HIV-1 protease with mutations at residue 50. Journal of Virology, 87, 4176–4184.
  • Mittal, S., Cai, Y., Nalam, M. N. L., Bolon, D. N. A., & Schiffer, C. A. (2012). Hydrophobic core flexibility modulates enzyme activity in HIV-1 Protease. Journal of the American Chemical Society, 134, 4163–4168.
  • Molla, A., Korneyeva, M., Gao, Q., Vasavanonda, S., Schipper, P. J., Mo, H. M., … Kempf, D. J. (1996). Ordered accumulation of mutations in HIV protease confers resistance to ritonavir. Nature Medicine, 2, 760–766.
  • Muzammil, S., Ross, P., & Freire, E. (2003). A major role for a set of non-active site mutations in the development of HIV-1 protease drug resistance. Biochemistry, 42, 631–638.
  • Naicker, P., Achilonu, I., Fanucchi, S., Fernandes, M., Ibrahim, M. A. A., Dirr, H. W., … Sayed, Y. (2013). Structural insights into the South African HIV-1 subtype C protease: Impact of hinge region dynamics and flap flexibility in drug resistance. Journal of Biomolecular Structure and Dynamics, 31, 1370–1380.
  • Perryman, A. L., Lin, J. H., & McCammon, J. A. (2004). HIV-1 protease molecular dynamics of a wild-type and of the V82F/I84V mutant: Possible contributions to drug resistance and a potential new target site for drugs (vol 13, pg 1108, 2004). Protein Science, 13, 1434–1434.
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF chimera – A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25, 1605–1612.
  • Piana, S., Carloni, P., & Rothlisberger, U. (2002). Drug resistance in HIV-1 protease: Flexibility-assisted mechanism of compensatory mutations. Protein Science, 11, 2393–2402.
  • Rhee, S. Y., Taylor, J., Fessel, W. J., Kaufman, D., Towner, W., Troia, P., … Shafer, R. W. (2010). HIV-1 protease mutations and protease inhibitor cross-resistance. Antimicrobial Agents and Chemotherapy, 54, 4253–4261.
  • Roe, D. R., & Cheatham III, T. E. (2013). PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. Journal of Chemical Theory and Computation, 9, 3084–3095.
  • Scott, W. R. P. & Schiffer, C. A. (2000). Curling of flap tips in HIV-1 protease as a mechanism for substrate entry and tolerance of drug resistance. Structure, 8, 1259–1265.
  • Shenai, P. M. X. & Zhao, Z. (2012). Applications of Principal Component Analysis (PCA) in Materials Science. In P. Sanguansat (Ed.), Principal component analysis-engineering applications (pp. 1–40). InTech. ISBN: 978-953-51-0182-6. Retrieved from http://www.intechopen.com/books/principalcomponent-analysis-engineering-applications/applications-of-principal-component-analysis-pca-in-materialsscience
  • Spinelli, S., Liu, Q. Z., Alzari, P. M., Hirel, P. H., & Poljak, R. J. (1991). The 3-dimensional structure of the aspartyl protease from the HIV-1 isolate bru. Biochimie, 73, 1391–1396.
  • Tie, Y. F., Boross, P. I., Wang, Y. F., Gaddis, L., Liu, F. L., Chen, X. F., … Weber, I. T. (2005). Molecular basis for substrate recognition and drug resistance from 1.1 to 1.6 angstrom resolution crystal structures of HIV-1 protease mutants with substrate analogs. FEBS Journal, 272, 5265–5277.
  • von der Helm, K. (1996). Retroviral proteases: Structure, function and inhibition from a non-anticipated viral enzyme to the target of a most promising HIV therapy. Biological Chemistry, 377, 765–774.
  • Walsh, I., Martin, A. J. M., Di Domenico, T., & Tosatto, S. C. E. (2012). ESpritz: Accurate and fast prediction of protein disorder. Bioinformatics, 28, 503–509.
  • Wlodawer, A. & Vondrasek, J. (1998). Inhibitors of HIV-1 protease: A major success of structure-assisted drug design. Annual Review of Biophysics and Biomolecular Structure, 27, 249–284.
  • Zhang, Y., Chang, Y.-C. E., Louis, J. M., Wang, Y.-F., Harrison, R. W., & Weber, I. T. (2014). Structures of darunavir-resistant HIV-1 protease mutant reveal atypical binding of darunavir to wide open flaps. ACS Chemical Biology, 9, 1351–1358.
  • Zhang, Y. M., Imamichi, H., Imamichi, T., Lane, H. C., Falloon, J., Vasudevachari, M. B., & Salzman, N. P. (1997). Drug resistance during Indinavir therapy is caused by mutations in the protease gene and in its Gag substrate cleavage sites. Journal of Virology, 71, 6662–6670.
  • Zhu, Z. W., Schuster, D. I., & Tuckerman, M. E. (2003). Molecular dynamics study of the connection between flap closing and binding of fullerene-based inhibitors of the HIV-1 protease. Biochemistry, 42, 1326–1333.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.