569
Views
10
CrossRef citations to date
0
Altmetric
Articles

Insights into molecular interactions between CaM and its inhibitors from molecular dynamics simulations and experimental data

, , , , , , & show all
Pages 78-91 | Received 16 Dec 2014, Accepted 19 Feb 2015, Published online: 09 Apr 2015

References

  • Baron, R., & McCammon, J. A. (2013). Molecular recognition and ligand association. Annual Review of Physical Chemistry, 64, 151–175.10.1146/annurev-physchem-040412-110047
  • Bouche, N., Yellin, A., Snedden, W. A., & Fromm, H. (2005). Plant-specific calmodulin-binding proteins. Annual Review of Plant Biology, 56, 435–466.10.1146/annurev.arplant.56.032604.144224
  • Case, D. A., Cheatham, T. E., 3rd, Darden, T., Gohlke, H., Luo, R., Merz, K. M., Jr., … Woods, R. J. (2005). The Amber biomolecular simulation programs. Journal of Computational Chemistry, 26, 1668–1688.10.1002/(ISSN)1096-987X
  • Chattopadhyaya, R., Meador, W. E., Means, A. R., & Quiocho, F. A. (1992). Calmodulin structure refined at 1.7 Å resolution. Journal of Molecular Biology, 228, 1177–1192.10.1016/0022-2836(92)90324-D
  • Chen, S. F., Cao, Y., Han, S., & Chen, J. Z. (2013). Insight into the structural mechanism for PKBalpha allosteric inhibition by molecular dynamics simulations and free energy calculations. Journal of Molecular Graphics and Modelling, 48C, 36–46.
  • Chen, R., & Chung, S. H. (2013). Molecular dynamics simulations of scorpion toxin recognition by the Ca(2+)-activated potassium channel KCa3.1. Biophysical Journal, 105, 1829–1837.10.1016/j.bpj.2013.08.046
  • Chin, D., & Means, A. R. (2000). Calmodulin: A prototypical calcium sensor. Trends in Cell Biology, 10, 322–328.10.1016/S0962-8924(00)01800-6
  • DeLano, W. L. (2004). Use of PYMOL as a communications tool for molecular science. Abstracts of Papers of the American Chemical Society, 228, U313–U314.
  • Dolenc, J., Baron, R., Missimer, J. H., Steinmetz, M. O., & van Gunsteren, W. F. (2008). Exploring the conserved water site and hydration of a coiled‐coil Trimerisation Motif: A MD simulation study. Chembiochem: A European journal of chemical biology, 9, 1749–1756.10.1002/cbic.v9:11
  • Du, J., Szabo, S. T., Gray, N. A., & Manji, H. K. (2004). Focus on CaMKII: A molecular switch in the pathophysiology and treatment of mood and anxiety disorders. International Journal of Neuropsychopharmacology, 7, 243–248.10.1017/S1461145704004432
  • Figueroa, M., Gonzalez-Andrade, M., Sosa-Peinado, A., Madariaga-Mazon, A., Del Rio-Portilla, F., Gonzalez Mdel, C., & Mata, R. (2011). Fluorescence, circular dichroism, NMR, and docking studies of the interaction of the alkaloid malbrancheamide with calmodulin. Journal of Enzyme Inhibition and Medicinal Chemistry, 26, 378–385.10.3109/14756366.2010.518964
  • Gonzalez-Andrade, M., Del Valle, P., Macias-Rubalcava, M. L., Sosa-Peinado, A., Del Carmen Gonzalez, M., & Mata, R. (2013). Calmodulin inhibitors from Aspergillus stromatoides. Chemistry & Biodiversity, 10, 328–337.
  • Gonzalez-Andrade, M., Figueroa, M., Rodriguez-Sotres, R., Mata, R., & Sosa-Peinado, A. (2009). An alternative assay to discover potential calmodulin inhibitors using a human fluorophore-labeled CaM protein. Analytical Biochemistry, 387, 64–70.10.1016/j.ab.2009.01.002
  • Gonzalez-Andrade, M., Rivera-Chavez, J., Sosa-Peinado, A., Figueroa, M., Rodriguez-Sotres, R., & Mata, R. (2011). Development of the fluorescent biosensor hCalmodulin (hCaM)L39C-monobromobimane(mBBr)/V91C-mBBr, a novel tool for discovering new calmodulin inhibitors and detecting calcium. Journal of Medicinal Chemistry, 54, 3875–3884.10.1021/jm200167g
  • Harmat, V., Bocskei, Z., Naray-Szabo, G., Bata, I., Csutor, A. S., Hermecz, I., & Ovadi, J. (2000). A new potent calmodulin antagonist with arylalkylamine structure: Crystallographic, spectroscopic and functional studies. Journal of Molecular Biology, 297, 747–755.10.1006/jmbi.2000.3607
  • Hou, T., Wang, J., Li, Y., & Wang, W. (2011). Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations Based on molecular dynamics simulations. Journal of Chemical Information and Modeling, 51, 69–82.10.1021/ci100275a
  • Huey, R., Morris, G. M., Olson, A. J., & Goodsell, D. S. (2007). A semiempirical free energy force field with charge-based desolvation. Journal of Computational Chemistry, 28, 1145–1152.10.1002/(ISSN)1096-987X
  • Junker, J. P., & Rief, M. (2009). Single-molecule force spectroscopy distinguishes target binding modes of calmodulin. Proceedings of the National Academy of Sciences USA, 106, 14361–14366.10.1073/pnas.0904654106
  • Kollman, P. A., Massova, I., Reyes, C., Kuhn, B., Huo, S., Chong, L., … Cheatham, T. E., 3rd (2000). Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models. Accounts of Chemical Research, 33, 889–897.10.1021/ar000033j
  • Laine, E., Yoneda, J. D., Blondel, A., & Malliavin, T. E. (2008). The conformational plasticity of calmodulin upon calcium complexation gives a model of its interaction with the oedema factor of Bacillus anthracis. Proteins, 71, 1813–1829.10.1002/prot.21862
  • Lindorff-Larsen, K., Piana, S., Palmo, K., Maragakis, P., Klepeis, J. L., Dror, R. O., & Shaw, D. E. (2010). Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins, 78, 1950–1958.
  • Miao, Y., Yi, Z., Cantrell, C., Glass, D. C., Baudry, J., Jain, N., & Smith, J. C. (2012). Coupled flexibility change in cytochrome P450cam substrate binding determined by neutron scattering, NMR, and molecular dynamics simulation. Biophysical Journal, 103, 2167–2176.10.1016/j.bpj.2012.10.013
  • Morris, G. M., Goodsell, D. S., Halliday, R. S., Huey, R., Hart, W. E., Belew, R. K., & Olson, A. J. (1998). Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. Journal of Computational Chemistry, 19, 1639–1662.10.1002/(ISSN)1096-987X
  • Norberto de Souza, O., & Ornstein, R. L. (1999). Molecular dynamics simulations of a protein-protein dimer: Particle-mesh Ewald electrostatic model yields far superior results to standard cutoff model. Journal of Biomolecular Structure & Dynamics, 16, 1205–1218.
  • Osawa, M., Swindells, M. B., Tanikawa, J., Tanaka, T., Mase, T., Furuya, T., & Ikura, M. (1998). Solution structure of Calmodulin-W-7 complex: The basis of diversity in molecular recognition. Journal of Molecular Biology, 276, 165–176.10.1006/jmbi.1997.1524
  • Seales, E. C., Micoli, K. J., & McDonald, J. M. (2006). Calmodulin is a critical regulator of osteoclastic differentiation, function, and survival. Journal of Cellular Biochemistry, 97, 45–55.10.1002/(ISSN)1097-4644
  • Shifman, J. M., & Mayo, S. L. (2002). Modulating calmodulin binding specificity through computational protein design. Journal of Molecular Biology, 323, 417–423.10.1016/S0022-2836(02)00881-1
  • Sorensen, B. R., & Shea, M. A. (1998). Interactions between domains of apo calmodulin alter calcium binding and stability. Biochemistry, 37, 4244–4253.10.1021/bi9718200
  • Thomas, A. S., Mao, S., & Elcock, A. H. (2013). Flexibility of the bacterial chaperone trigger factor in microsecond-timescale molecular dynamics simulations. Biophysical Journal, 105, 732–744.10.1016/j.bpj.2013.06.028
  • Treesuwan, W., & Hannongbua, S. (2009). Bridge water mediates nevirapine binding to wild type and Y181C HIV-1 reverse transcriptase—Evidence from molecular dynamics simulations and MM-PBSA calculations. Journal of Molecular Graphics and Modelling, 27, 921–929.10.1016/j.jmgm.2009.02.007
  • Vandonselaar, M., Hickie, R. A., Quail, J. W., & Delbaere, L. T. (1994). Trifluoperazine-induced conformational change in Ca(2+)-calmodulin. Nature Structural Biology, 1, 795–801.10.1038/nsb1194-795
  • Vertessy, B. G., Harmat, V., Bocskei, Z., Naray-Szabo, G., Orosz, F., & Ovadi, J. (1998). Simultaneous binding of drugs with different chemical structures to Ca2+-calmodulin: Crystallographic and spectroscopic studies. Biochemistry, 37, 15300–15310.10.1021/bi980795a
  • Walker, R. C., Crowley, M. F., & Case, D. A. (2008). The implementation of a fast and accurate QM/MM potential method in Amber. Journal of Computational Chemistry, 29, 1019–1031.10.1002/(ISSN)1096-987X
  • Wallace, A. C., Laskowski, R. A., & Thornton, J. M. (1995). LIGPLOT: A program to generate schematic diagrams of protein-ligand interactions. Protein Engineering, 8, 127–134.10.1093/protein/8.2.127
  • Wang, J., Wang, W., Kollman, P. A., & Case, D. A. (2006). Automatic atom type and bond type perception in molecular mechanical calculations. Journal of Molecular Graphics and Modelling, 25, 247–260.10.1016/j.jmgm.2005.12.005
  • Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A., & Case, D. A. (2004). Development and testing of a general amber force field. Journal of Computational Chemistry, 25, 1157–1174.10.1002/(ISSN)1096-987X
  • Xu, M., Yu, L., Wan, B., & Huang, Q. (2011). Predicting inactive conformations of protein kinases using active structures: Conformational selection of type-II inhibitors. PLoS ONE, 6, e22644.10.1371/journal.pone.0022644
  • Yang, C., Jas, G. S., & Kuczera, K. (2001). Structure and dynamics of calcium-activated calmodulin in solution. Journal of Biomolecular Structure & Dynamics, 19, 247–271.
  • Zhou, Z., & Madura, J. D. (2004). Relative free energy of binding and binding mode calculations of HIV-1 RT inhibitors based on dock-MM-PB/GS. Proteins, 57, 493–503.10.1002/prot.20223

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.