404
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

Structural and mechanistic analysis of engineered trichodiene synthase enzymes from Trichoderma harzianum: towards higher catalytic activities empowering sustainable agriculture

, , , &
Pages 1176-1189 | Received 21 May 2015, Accepted 14 Jul 2015, Published online: 18 Aug 2015

References

  • Ahmed, M., & Upadhayay, R. S. (2009). Role of soil amendment with plant growth promoting fungi and wilt pathogen, on growth and yield of potato. Journal of Mycology and Plant Pathology, 39, 312–316.
  • Ayala, S., & Rao, E. V. S. P. (2002). Perspectives of soil fertility management with a focus on fertilizer use for crop productivity. Current Science, 82, 797–807.
  • Bashan, Y. (1998). Inoculants of plant growth promoting bacteria for use in agriculture. Biotechnology Advances, 16, 729–770.10.1016/S0734-9750(98)00003-2
  • Bava, K. A., Gromiha, M. M., Uedaira, H., Kitajima, K., & Sarai, A. (2004). ProTherm, version 4.0: thermodynamic database for proteins and mutants. Nucleic Acids Research, 32, D120–D121.
  • Ben Nasr, N., Guillemain, H., Lagarde, N., Zagury, J. F., & Montes, M. (2013). Multiple structures for virtual ligand screening: Defining binding site properties-based criteria to optimize the selection of the query. Journal of Chemical Information and Modeling, 53, 293–311.10.1021/ci3004557
  • Berendsen, H. J., van der Spoel, D., & van Drunen, R. (1995). GROMACS: A message-passing parallel molecular dynamics implementation. Computer Physics Communications, 91, 43–56.10.1016/0010-4655(95)00042-E
  • Bowen, G. D., & Rovira, A. D. (1999). The rhizosphere and its management to improve plant growth. Advances in Agronomy, 66, 1–102.10.1016/S0065-2113(08)60425-3
  • Cardoza, R. E., Malmierca, M. G., Hermosa, M. R., Alexander, N. J., McCormick, S. P., Proctor, R. H., … Gutiérrez, S. (2011). Identification of loci and functional characterization of trichothecene biosynthesis genes in filamentous fungi of the genus Trichoderma. Applied Environmental Microbiology, 77, 4867–4877.10.1128/AEM.00595-11
  • Chang, M. C., & Keasling, J. D. (2006). Production of isoprenoid pharmaceuticals by engineered microbes. Nature Chemical Biology, 2, 674–681.10.1038/nchembio836
  • Corpet, F. (1988). Nucleic Acids Research, 16, 10881–10890. Retrieved from http://www.toulouse.inra.fr/multalin.html10.1093/nar/16.22.10881
  • Cowan, R., & Grosdidier, G. (2000). Visualization tools for monitoring and evaluation of distributed computing systems. In Proceedings of the International conference on computing in high energy and nuclear physics, Padova, Italy.
  • Cundliffe, E., Cannon, M., & Davies, J. (1974). Mechanism of inhibition of eukaryotic protein synthesis by trichothecene fungal toxins. Proceedings of the National Academy of Sciences, 71, 30–34.10.1073/pnas.71.1.30
  • Damborsky, J. & Brezovsky, J. (2014). Computational tools for designing and engineering enzymes. Current Opinion in Chemical Biology, 19, 8–16.10.1016/j.cbpa.2013.12.003
  • Davis, I. W., Leaver-Fay, A., Chen, V. B., Block, J. N., Kapral, G. J., Wang, X., … Richardson, D. C. (2007). MolProbity: All-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Research, 35, W375–W383.10.1093/nar/gkm216
  • DeLano, W. L. (2002). The PyMOL molecular graphics system.
  • Durrant, J. D., de Oliveira, C. A. F., & McCammon, J. A. (2011). POVME: An algorithm for measuring binding-pocket volumes. Journal of Molecular Graphics and Modelling, 29, 773–776.10.1016/j.jmgm.2010.10.007
  • Eisenberg, D., Lüthy, R., & Bowie, J. U. (1997). VERIFY3D: Assessment of protein models with three-dimensional profiles. Methods in Enzymology, 277, 396–404.10.1016/S0076-6879(97)77022-8
  • Emsley, P., & Cowtan, K. (2004). Coot: model-building tools for molecular graphics. Acta Crystallographica Section D: Biological Crystallography, 60, 2126–2132.10.1107/S0907444904019158
  • Goldstein, J. L., & Brown, M. S. (1990). Regulation of the mevalonate pathway. Nature, 343, 425–430.10.1038/343425a0
  • Gouet, P., Courcelle, E., & Stuart, D. I. (1999). ESPript: analysis of multiple sequence alignments in PostScript. Bioinformatics, 15, 305–308.10.1093/bioinformatics/15.4.305
  • Jain, A., Singh, A., Singh, S., & Singh, H. B. (2013). Microbial consortium-induced changes in oxidative stress markers in pea plants challenged with Sclerotinia sclerotiorum. Journal of Plant Growth Regulation, 32, 388–398.10.1007/s00344-012-9307-3
  • Kapust, R. B., Tozser, J., Fox, J. D., Anderson, D. E., Cherry, S., Copeland, T. D., & Waugh, D. S. (2001). Tobacco etch virus protease: Mechanism of autolysis and rational design of stable mutants with wild-type catalytic proficiency. Protein Engineering Design and Selection, 14, 993–1000.10.1093/protein/14.12.993
  • Kimura, M., Tokai, T., Takahashi-Ando, N., Ohsato, S., & Fujimura, M. (2007). Molecular and genetic studies of fusarium trichothecene biosynthesis: Pathways, genes, and evolution. Bioscience Biotechnology Biochemistry, 71, 2105–2123.10.1271/bbb.70183
  • Kirby, J., & Keasling, J. D. (2009). Biosynthesis of plant isoprenoids: Perspectives for microbial engineering. Annual Review of Plant Biology, 60, 335–355.10.1146/annurev.arplant.043008.091955
  • Kumari, R., Kumar, R., Open Source Drug Discovery Consortium., & Lynn, A. (2014). g_mmpbsa – A GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54, 1951–1962 dx.doi.org/102011.1021/ci500020m10.1021/ci500020m
  • Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK: A program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26, 283–291.10.1107/S0021889892009944
  • Laskowski, R. A., & Swindells, M. B. (2011). LigPlot+: Multiple ligand–protein interaction diagrams for drug discovery. Journal of Chemical Information and Modeling, 51, 2778–2786.10.1021/ci200227u
  • Librando, V., & Pappalardo, M. (2012). Engineered enzyme interactions with polycyclic aromatic hydrocarbons: A theoretical approach. Journal of Molecular Graphics and Modelling, 36, 30–35.10.1016/j.jmgm.2012.02.005
  • Martin, F. M., Perotto, S., & Bonfante, P. (2001). Mycorrhizal fungi: a fungal community at the interface between soil and roots. In R. Pinton, Z. Varanini, & P. Nannipieri (Eds.), The Rhizosphere: Biochemistry and Organic Substances at the Soil-Plant Interface (pp. 263–296). New York, NY: Marcel Dekker & Taylor and Francis.
  • Morley, K. L., & Kazlauskas, R. J. (2005). Improving enzyme properties: when are closer mutations better? Trends in Biotechnology, 23, 231–237.10.1016/j.tibtech.2005.03.005
  • Mukherjee, P. K., Horwitz, B. A., & Kenerley, C. M. (2012). Secondary metabolism in Trichoderma – a genomic perspective. Microbiology, 158, 35–45.10.1099/mic.0.053629-0
  • Pandey, P., Bisht, S., Sood, A., Aeron, A., Sharma, G. D., & Maheshwari, D. K. (2012). Consortium of plant-growth-promoting bacteria: Future perspective in agriculture. In D. K. Maheshwari (Ed.), Bacteria in Agrobiology: Plant Probiotics (pp. 185–200). Berlin Heidelberg: Springer Verlag.10.1007/978-3-642-27515-9
  • Park, S., Morley, K. L., Horsman, G. P., Holmquist, M., Hult, K., & Kazlauskas, R. J. (2005). Focusing mutations into the P. fluorescens esterase binding site increases enantioselectivity more effectively than distant mutations. Chemistry & Biology, 12, 45–54.
  • Reino, J. L., Guerrero, R. F., Hernández-Galán, R., & Collado, I. G. (2008). Secondary metabolites from species of the biocontrol agent Trichoderma. Phytochemistry Reviews., 7, 89–123.
  • Rynkiewicz, M. J., Cane, D. E., & Christianson, D. W. (2001). Structure of trichodiene synthase from Fusarium sporotrichioides provides mechanistic inferences on the terpene cyclization cascade. Proceedings of the National Academy of Sciences, 98, 13543–13548.10.1073/pnas.231313098
  • Rynkiewicz, M. J., Cane, D. E., & Christianson, D. W. (2002). X-ray crystal structures of D100E trichodiene synthase and its pyrophosphate complex reveal the basis for terpene product diversity. Biochemistry, 41, 1732–1741.10.1021/bi011960g
  • Sandhu, P., & Akhter, Y. (2015). The internal gene duplication and interrupted coding sequences in the mMPL genes of Mycobacterium tuberculosis: towards understanding the multidrug transport in an evolutionary prospective. International Journal of Medical Microbiology,. doi:10.1016/j.ijmm.2015.03.005.
  • Schüttelkopf, A. W., & van Aalten, D. M. F. (2004). PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallography, D60, 1355–1363.
  • Sivasithamparam, K., & Ghisalberti, E.L. (1998). Secondary Metabolism in Trichoderma and Gliocladium . In: C.P. Kubicek, & G.E. Harman (Eds.), Trichoderma and Gliocladium. Vol. 1. Basic Biology, Taxonomy and Genetics (pp. 139–191). London: Taylor and Francis.
  • Świderek, K., Tuñón, I., Moliner, V., & Bertran, J. (2015). Computational strategies for the design of new enzymatic functions. Archives of Biochemistry and Biophysics,. doi:10.1016/j.abb.2015.03.13.
  • Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., & Higgins, D. G. (1997). The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 25, 4876–4882.10.1093/nar/25.24.4876
  • Tijerino, A., Hermosa, R., Cardoza, R. E., Moraga, J., Malmierca, M. G., Aleu, J., … Gutierrez S. (2011). Overexpression of the Trichoderma brevicompactum tri5 gene: Effect on the expression of the trichodermin biosynthetic genes and on tomato seedlings. Toxins, 3, 1220–1232.10.3390/toxins3091220
  • Vedula, L. S., Cane, D. E., & Christianson, D. W. (2005). Role of Arginine-304 in the diphosphate-triggered active site closure mechanism of trichodiene synthase. Biochemistry, 44, 12719–12727.10.1021/bi0510476
  • Vedula, L. S., Zhao, Yuxin, Coates, Robert M., Koyama, Tanetoshi, & Cane, D. W. (2007). Exploring biosynthetic diversity with trichodiene synthase. Archives of Biochemistry and Biophysics, 466, 260–266.10.1016/j.abb.2007.06.016
  • Vedula, L. S., Jiang, J., Zakharian, T., Cane, D. E., & Christianson, D. W. (2008). Structural and mechanistic analysis of trichodiene synthase using site-directed mutagenesis: Probing the catalytic function of tyrosine-295 and the asparagine-225/serine-229/glutamate-233– motif. Archives of Biochemistry and Biophysics, 469, 184–194.10.1016/j.abb.2007.10.015
  • Wang, F., Wan, H., Hu, J., & Chang, S. (2015). Molecular dynamics simulations of wild type and mutants of botulinum neurotoxin A complexed with synaptic vesicle protein 2C. Molecular BioSystems, 11, 223–231.10.1039/C4MB00383G
  • Webb, B., & Sali, A. (2014). Protein structure modeling with MODELLER. In Protein Structure Prediction (pp. 1–15). New York, NY: Springer.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.