618
Views
40
CrossRef citations to date
0
Altmetric
Original Articles

Pharmacophore model prediction, 3D-QSAR and molecular docking studies on vinyl sulfones targeting Nrf2-mediated gene transcription intended for anti-Parkinson drug design

, , &
Pages 1282-1297 | Received 13 May 2015, Accepted 21 Jul 2015, Published online: 23 Nov 2015

References

  • Artursson, P., & Karlsson, J. (1991). Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cells. Biochemical and Biophysical Research Communications, 175, 880–885. doi:10.1016/0006-291X(91)91647-U
  • Asraf Vazhapully, M., Vinod, D., & Zeinul Hukuman, N. H. (2014). Pharmacophore and 3D QSAR study of TGFβ inhibitors. Letters in Drug Design & Discovery, 11, 316–330. doi:10.2174/157018081131000071
  • Bahl, A., Joshi, P., Bharate, S., & Chopra, H. (2014). Pharmacophore modeling and 3D-QSAR studies of leucettines as potent Dyrk2 inhibitors. Medicinal Chemistry Research, 23, 1925–1933. doi:10.1007/s00044-013-0767-1
  • Beal, M. F. (2003). Mitochondria, oxidative damage, and inflammation in Parkinson’s disease. Annals of the New York Academy of Sciences, 991, 120–131. doi:10.1111/j.1749-6632.2003.tb07470.x
  • Birben, E., Sahiner, U. M., Sackesen, C., Erzurum, S., & Kalayci, O. (2012). Oxidative stress and antioxidant defense. World Allergy Organization Journal, 5, 9–19. doi:10.1097/WOX.0b013e3182439613
  • Choi, H. J., Lee, S. Y., Cho, Y., No, H., Kim, S. W., & Hwang, O. (2006). Tetrahydrobiopterin causes mitochondrial dysfunction in dopaminergic cells: Implications for Parkinson’s disease. Neurochemistry International, 48, 255–262. doi:10.1016/j.neuint.2005.10.011
  • Darvas, F., Keseru, G., Papp, A., Dorman, G., Urge, L., & Krajcsi, P. (2002). In silico and ex silico ADME approaches for drug discovery. Current Topics in Medicinal Chemistry, 2, 1287–1304. doi:10.2174/1568026023392841
  • de Lau, L. M., & Breteler, M. M. (2006). Epidemiology of Parkinson’s disease. The Lancet Neurology, 5, 525–535. doi:10.1016/S1474-4422(06)70471-9
  • de Vries, H. E., Witte, M., Hondius, D., Rozemuller, A. J., Drukarch, B., Hoozemans, J., & van Horssen, J. (2008). Nrf2-induced antioxidant protection: A promising target to counteract ROS-mediated damage in neurodegenerative disease? Free Radical Biology and Medicine, 45, 1375–1383. doi:10.1016/j.freeradbiomed.2008.09.001
  • Dhanik, A., McMurray, J. S., & Kavraki, L. (2011). On modeling peptidomimetics in complex with the SH2 domain of Stat3. Engineering in Medicine and Biology Society, EMBC, 2011 Annual International Conference of the IEEE (pp. 3229–3232). Boston, MA: IEEE.10.1109/IEMBS.2011.6090878
  • Dixon, S., Smondyrev, A., Knoll, E., Rao, S., Shaw, D., & Friesner, R. (2006). PHASE: A new engine for pharmacophore perception, 3D QSAR model development, and 3D database screening: 1. Methodology and preliminary results. Journal of Computer-Aided Molecular Design, 20, 647–671. doi:10.1007/s10822-006-9087-6
  • Duffy, E. M., & Jorgensen, W. L. (2000). Prediction of properties from simulations: Free energies of solvation in hexadecane, octanol, and water. Journal of the American Chemical Society, 122, 2878–2888. doi:10.1021/ja993663t
  • Fahn, S. (2008). The history of dopamine and levodopa in the treatment of Parkinson’s disease. Movement Disorders, 23, S497–S508. doi:10.1002/mds.22028
  • Fe, S. (2004). SMARTS, daylight chemical information systems. Retrieved from http://www.daylight.com/dayhtml/doc/theory/theory.smarts.html
  • Friesner, R. A., Murphy, R. B., Repasky, M. P., Frye, L. L., Greenwood, J. R., Halgren, T. A., … Mainz, D. T. (2006). Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein−ligand complexes. Journal of Medicinal Chemistry, 49, 6177–6196. doi:10.1021/jm051256o
  • Geladi, P., & Kowalski, B. R. (1986). Partial least-squares regression: A tutorial. Analytica Chimica Acta, 185(0), 1–17. doi:10.1016/0003-2670(86)80028-9
  • Halgren, T. (2007). New method for fast and accurate binding-site identification and analysis. Chemical Biology & Drug Design, 69, 146–148. doi:10.1111/j.1747-0285.2007.00483.x
  • Halgren, T. A. (2009). Identifying and characterizing binding sites and assessing druggability. Journal of Chemical Information and Modeling, 49, 377–389. doi:10.1021/ci800324 m
  • Halgren, T. A., Murphy, R. B., Friesner, R. A., Beard, H. S., Frye, L. L., Pollard, W. T., & Banks, J. L. (2004). Glide: A new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. Journal of Medicinal Chemistry, 47, 1750–1759. doi:10.1021/jm030644s
  • Hou, T., Wang, J., Li, Y., & Wang, W. (2011). Assessing the performance of the molecular mechanics/Poisson Boltzmann surface area and molecular mechanics/generalized born surface area methods. II. The accuracy of ranking poses generated from docking. Journal of Computational Chemistry, 32, 866–877. doi:10.1002/jcc.21666
  • Hwang, O. (2013). Role of oxidative stress in Parkinson’s disease. Experimental Neurobiology, 22, 11–17. doi:10.5607/en.2013.22.1.11
  • Ioakimidis, L., Thoukydidis, L., Mirza, A., Naeem, S., & Reynisson, J. (2008). Benchmarking the reliability of QikProp. Correlation between experimental and predicted values. QSAR & Combinatorial Science, 27, 445–456.
  • Itoh, K., Wakabayashi, N., Katoh, Y., Ishii, T., Igarashi, K., Engel, J. D., & Yamamoto, M. (1999). Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes & Development, 13, 76–86.
  • Johnson, J. A., Johnson, D. A., Kraft, A. D., Calkins, M. J., Jakel, R. J., Vargas, M. R., & Chen, P. C. (2008). The Nrf2-ARE pathway: An indicator and modulator of oxidative stress in neurodegeneration. Annals of the New York Academy of Sciences, 1147, 61–69. doi:10.1196/annals.1427.036
  • Jorgensen, W. L., Maxwell, D. S., & Tirado-Rives, J. (1996). Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. Journal of the American Chemical Society, 118, 11225–11236. doi:10.1021/ja9621760
  • Kennedy, T. (1997). Managing the drug discovery/development interface. Drug Discovery Today, 2, 436–444.10.1016/S1359-6446(97)01099-4
  • Kumar, S. P., Jha, P. C., Pandya, H. A., & Jasrai, Y. T. (2014). Implementation of pseudoreceptor-based pharmacophore queries in the prediction of probable protein targets: explorations in the protein structural profile of Zea mays. Molecular Biosystems, 10, 1833–1844. doi:10.1039/c4mb00058 g
  • Kweon, M. H., Adhami, V. M., Lee, J. S., & Mukhtar, H. (2006). Constitutive overexpression of Nrf2-dependent heme oxygenase-1 in A549 cells contributes to resistance to apoptosis induced by epigallocatechin 3-gallate. Journal of Biological Chemistry, 281, 33761–33772. doi:10.1074/jbc.M604748200
  • Li, J., Abel, R., Zhu, K., Cao, Y., Zhao, S., & Friesner, R. A. (2011). The VSGB 2.0 model: A next generation energy model for high resolution protein structure modeling. Proteins: Structure, Function, and Bioinformatics, 79, 2794–2812. doi:10.1002/prot.23106
  • Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2001). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 46, 3–26. doi:10.1016/S0169-409X(00)00129-0
  • Lyne, P. D., Lamb, M. L., & Saeh, J. C. (2006). Accurate prediction of the relative potencies of members of a series of kinase inhibitors using molecular docking and MM-GBSA scoring. Journal of Medicinal Chemistry, 49, 4805–4808. doi:10.1021/jm060522a
  • Ma, Q. (2013). Role of Nrf2 in oxidative stress and toxicity. Annual Review of Pharmacology and Toxicology, 53, 401–426. doi:10.1146/annurev-pharmtox-011112-140320
  • Mahapatra, M., Kumar, R., Malla, P., & Kumar, M. (2014). In silico accounting of novel pyridazine analogues as h-PTP 1B inhibitors: pharmacophore modelling, atom-based 3D QSAR and docking studies. Medicinal Chemistry Research, 23, 2701–2711. doi:10.1007/s00044-013-0797-8
  • Martin, Y. C. (2005). A bioavailability score. Journal of Medicinal Chemistry, 48, 3164–3170. doi:10.1021/jm0492002
  • Moore, D. J., West, A. B., Dawson, V. L., & Dawson, T. M. (2005). Molecular pathophysiology of Parkinson’s disease. Annual Review of Neuroscience, 28, 57–87. doi:10.1146/annurev.neuro.28.061604.135718
  • Motohashi, H., & Yamamoto, M. (2004). Nrf2–Keap1 defines a physiologically important stress response mechanism. Trends in Molecular Medicine, 10, 549–557.10.1016/j.molmed.2004.09.003
  • OECD. (2007). Guidance document on validation of QSAR. ( 2007). Retrieved from http://www.oecd.org/chemicalsafety/risk-assessment/37849783zpdf
  • Ojha, P. K., Mitra, I., Das, R. N., & Roy, K. (2011). Further exploring rm2 metrics for validation of QSPR models. Chemometrics and Intelligent Laboratory Systems, 107, 194–205. doi:10.1016/j.chemolab.2011.03.011
  • Peterson, L. J., & Flood, P. M. (2012). Oxidative stress and microglial cells in Parkinson’s disease. Mediators of Inflammation, 2012, 1–12. 401264. doi:10.1155/2012/401264
  • Prakash Tanwar, O., Karthikeyan, C., Hari Narayana Moorthy, N. S., & Trivedi, P. (2010). 3D QSAR of aminophenyl benzamide derivatives as histone deacetylase inhibitors. Medicinal Chemistry, 6, 277–285. doi:10.2174/157340610793358846
  • Ramsey, C. P., Glass, C. A., Montgomery, M. B., Lindl, K. A., Ritson, G. P., Chia, L. A., & Hamilton, R. L. (2007). Expression of Nrf2 in neurodegenerative diseases. Journal of Neuropathology and Experimental Neurology, 66, 75–85. doi:10.1097/nen.0b013e31802d6da9
  • Roy, K., & Kar, S. (2014). The rm2 metrics and regression through origin approach: Reliable and useful validation tools for predictive QSAR models (Commentary on ‘is regression through origin useful in external validation of QSAR models?’). European Journal of Pharmaceutical Sciences, 62, 111–114. doi:10.1016/j.ejps.2014.05.019
  • Roy, K., Kar, S., & Ambure, P. (2015). On a simple approach for determining applicability domain of QSAR models. Chemometrics and Intelligent Laboratory Systems, 145, 22–29. doi:10.1016/j.chemolab.2015.04.013
  • Roy, K., Mitra, I., Kar, S., Ojha, P. K., Das, R. N., & Kabir, H. (2012). Comparative studies on some metrics for external validation of QSPR models. Journal of Chemical Information and Modeling, 52, 396–408. doi:10.1021/ci200520 g
  • Savitt, J. M., Dawson, V. L., & Dawson, T. M. (2006). Diagnosis and treatment of Parkinson disease: Molecules to medicine. Journal of Clinical Investigation, 116, 1744–1754. doi:10.1172/JCI29178
  • Shivakumar, D., Williams, J., Wu, Y., Damm, W., Shelley, J., & Sherman, W. (2010). Prediction of absolute solvation free energies using molecular dynamics free energy perturbation and the OPLS force field. Journal of Chemical Theory and Computation, 6, 1509–1519.10.1021/ct900587b
  • Shulman, J. M., De Jager, P. L., & Feany, M. B. (2011). Parkinson’s disease: Genetics and pathogenesis. Annual Review of Pathology: Mechanisms of Disease, 6, 193–222. doi:10.1146/annurev-pathol-011110-130242
  • Sporn, M. B., & Liby, K. T. (2012). NRF2 and cancer: The good, the bad and the importance of context. Nature Reviews Cancer, 12, 564–571.10.1038/nrc3278
  • Teli, M., & Rajanikant, G. K. (2012). Pharmacophore generation and atom-based 3D-QSAR of N-iso-propyl pyrrole-based derivatives as HMG-CoA reductase inhibitors. Organic and Medicinal Chemistry Letters, 2(1), 1–10. doi:10.1186/2191-2858-2-25
  • Testa, C. M., Sherer, T. B., & Greenamyre, J. T. (2005). Rotenone induces oxidative stress and dopaminergic neuron damage in organotypic substantia nigra cultures. Molecular Brain Research, 134, 109–118. doi:10.1016/j.molbrainres.2004.11.007
  • Uttara, B., Singh, A. V., Zamboni, P., & Mahajan, R. T. (2009). Oxidative stress and neurodegenerative diseases: A review of upstream and downstream antioxidant therapeutic options. Current Neuropharmacology, 7, 65–74. doi:10.2174/157015909787602823
  • van de Waterbeemd, H., & Gifford, E. (2003). ADMET in silico modelling: Towards prediction paradise? Nature Reviews Drug Discovery, 2, 192–204. doi:10.1038/nrd1032
  • Verma, J., Khedkar, V. M., & Coutinho, E. C. (2010). 3D-QSAR in drug design – A review. Current Topics in Medicinal Chemistry, 10, 95–115. doi:10.2174/156802610790232260
  • Wakabayashi, N., Dinkova-Kostova, A. T., Holtzclaw, W. D., Kang, M.-I., Kobayashi, A., Yamamoto, M., & Talalay, P. (2004). Protection against electrophile and oxidant stress by induction of the phase 2 response: Fate of cysteines of the Keap1 sensor modified by inducers. Proceedings of the National Academy of Sciences, 101, 2040–2045. doi:10.1073/pnas.0307301101
  • Willett, P., Barnard, J. M., & Downs, G. M. (1998). Chemical similarity searching. Journal of Chemical Information and Computer Sciences, 38, 983–996. doi:10.1021/ci9800211
  • Wolber, G., Seidel, T., Bendix, F., & Langer, T. (2008). Molecule-pharmacophore superpositioning and pattern matching in computational drug design. Drug Discovery Today, 13, 23–29. doi:10.1016/j.drudis.2007.09.007
  • Woo, S. Y., Kim, J. H., Moon, M. K., Han, S. H., Yeon, S. K., Choi, J. W., & Park, K. D. (2014). Discovery of vinyl sulfones as a novel class of neuroprotective agents toward Parkinson’s disease therapy. Journal of Medicinal Chemistry, 57, 1473–1487. doi:10.1021/jm401788m
  • Yu, Z., Jacobson, M. P., & Friesner, R. A. (2006). What role do surfaces play in GB models? A new-generation of surface-generalized born model based on a novel gaussian surface for biomolecules. Journal of Computational Chemistry, 27, 72–89. doi:10.1002/jcc.20307
  • Zhang, Y., Dawson, V. L., & Dawson, T. M. (2000). Oxidative stress and genetics in the pathogenesis of Parkinson’s disease. Neurobiology of Disease, 7, 240–250. doi:10.1006/nbdi.2000.0319
  • Zhang, J., Liu, G., & Tang, Y. (2009). Chemical function-based pharmacophore generation of selective κ-opioid receptor agonists by catalyst and phase. Journal of Molecular Modeling, 15, 1027–1041.10.1007/s00894-008-0418-5

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.