310
Views
15
CrossRef citations to date
0
Altmetric
Research Articles

A generative model for protein contact networks

, , , &
Pages 1441-1454 | Received 15 Jun 2015, Accepted 26 Jul 2015, Published online: 21 Apr 2016

References

  • Almendral, J. A. & Díaz-Guilera, A. (2007). Dynamical and spectral properties of complex networks. New Journal of Physics, 9, 187. doi:10.1088/1367-2630/9/6/187
  • Balakrishnan, S., Kamisetty, H., Carbonell, J. G., Lee, S.-I., & Langmead, C. J. (2011). Learning generative models for protein fold families. Proteins: Structure, Function, and Bioinformatics, 79, 1061–1078. doi:10.1002/prot.22934
  • Baldassi, C., Zamparo, M., Feinauer, C., Procaccini, A., Zecchina, R., Weigt, M., & Pagnani, A. (2014). Fast and accurate multivariate Gaussian modeling of protein families: Predicting residue contacts and protein-interaction partners. PLoS ONE, 9, e92721. doi:10.1371/journal.pone.0092721.
  • Banavar, J. R. & Maritan, A. (2007). Physics of proteins. Annual Review of Biophysics and Biomolecular Structure, 36, 261–280. doi:10.1146/annurev.biophys.36.040306.132808.
  • Banavar, J. R. & Vishveshwara, S. (2013). Protein structure and folding-simplicity within complexity. Journal of Biomolecular Structure and Dynamics, 31, 973–975. doi:10.1080/07391102.2012.748533.
  • Bartoli, L., Fariselli, P., & Casadio, R. (2007). The effect of backbone on the small-world properties of protein contact maps. Physical Biology, 4, L1. doi:10.1088/1478-3975/4/4/L01.
  • Blondel, V. D., Guillaume, J.-L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008, P10008. doi:10.1088/1742-5468/2008/10/P10008.
  • Boccaletti, S., Latora, V., Moreno, Y., Chavez, M. & Hwang, D. (2006). Complex networks: Structure and dynamics. Physics Reports, 424, 175–308. ISSN 03701573. doi:10.1016/j.physrep.2005.10.009.
  • Boomsma, W., Mardia, K. V., Taylor, C. C., Ferkinghoff-Borg, J., Krogh, A., & Hamelryck, T. (2008). A generative, probabilistic model of local protein structure. Proceedings of the National Academy of Sciences, 105, 8932–8937. doi:10.1073/pnas.0801715105.
  • Bullmore, E. T. & Sporns, Olaf (2012). The economy of brain network organization. Nature Reviews Neuroscience, 13, 336–349. doi:10.1038/nrn3214.
  • Chatterjee, S., Bhattacharyya, M., & Vishveshwara, S. (2012). Network properties of protein-decoy structures. Journal of Biomolecular Structure and Dynamics, 29, 1110–1126. doi:10.1080/07391102.2011.672625.
  • Chiti, F., Taddei, N., White, P. M., Bucciantini, M., Magherini, F., Stefani, M., & Dobson, C. M. (1999). Mutational analysis of acylphosphatase suggests the importance of topology and contact order in protein folding. Nature Structural & Molecular Biology, 6, 1005–1009. doi:10.1038/14890.
  • Chung, F. (2007). The heat kernel as the pagerank of a graph. Proceedings of the National Academy of Sciences, 104, 19735–19740. doi:10.1073/pnas.0708838104.
  • Comellas, F. & Diaz-Lopez, J. (2008). Spectral reconstruction of complex networks. Physica A: Statistical Mechanics and its Applications, 387, 6436–6442. ISSN 03784371. doi:10.1016/j.physa.2008.07.032.
  • Costa, L.da F., Rodrigues, F.A., Travieso, G. & Villas Boas, P.R. (2007). Characterization of complex networks: A survey of measurements. Advances in Physics, 56, 167–242. doi:10.1080/00018730601170527.
  • Csermely, P., Sandhu, K. S., Hazai, E., Hoksza, Z., Kiss, H. J. M., Miozzo, F., & Veres, D. V. (2012). and R. Nussinov. Disordered proteins and network disorder in network descriptions of protein structure, dynamics and function: hypotheses and a comprehensive review. Current Protein and Peptide Science, 13, 19–33. doi:10.2174/138920312799277992.
  • Currin, A., Swainston, N., Day, P. J., & Kell, D. B. (2015). Synthetic biology for the directed evolution of protein biocatalysts: Navigating sequence space intelligently. Chemical Society Reviews, 44, 1172–1239. doi:10.1039/C4CS00351A.
  • Cuzzocrea, A., Papadimitriou, A., Katsaros, D., & Manolopoulos, Y. (2012). Edge betweenness centrality: A novel algorithm for QoS-based topology control over wireless sensor networks. Journal of Network and Computer Applications, 35, 1210–1217. doi:10.1016/j.jnca.2011.06.001.
  • de Juan, D., Pazos, F., & Valencia, A. (2013). Emerging methods in protein co-evolution. Nature Reviews Genetics, 14, 249–261. doi:10.1038/nrg3414.
  • de Lange, S.C., de Reus, M.A. & van den Heuvel, M.P. (2013). The Laplacian spectrum of neural networks. Frontiers in Computational Neuroscience, 7, ISSN 1662--5188, PMCID: PMC3888935. doi:10.3389/fncom.2013.00189.
  • Dehmer, M. & Mowshowitz, A. (2011). A history of graph entropy measures. Information Sciences, 181, 57–78. ISSN 0020-0255. doi:10.1016/j.ins.2010.08.041.
  • Di Paola, L., De Ruvo, M., Paci, P., Santoni, D., & Giuliani, A. (2012). Protein contact networks: an emerging paradigm in chemistry. Chemical Reviews, 113, 1598–1613. doi:10.1021/cr3002356.
  • Di Paola, L. & Giuliani, A. (2015). Protein contact network topology: a natural language for allostery. Current Opinion in Structural Biology, 31, 43–48. doi:10.1016/j.sbi.2015.03.001.
  • Ekeberg, Magnus, Lövkvist, Cecilia, Lan, Yueheng, Weigt, Martin, & Aurell, Erik (2013). Improved contact prediction in proteins: using pseudolikelihoods to infer potts models. Physical Review E, 87, 012707. doi:10.1103/PhysRevE.87.012707.
  • Estrada, E. (2010). Universality in protein residue networks. Biophysical Journal, 98, 890–900. doi:10.1016/j.bpj.2009.11.017.
  • Finkelstein, A.V. & Galzitskaya, O.V. (2004). Physics of protein folding. Physics of Life Reviews, 1, 23–56. ISSN 1571-0645. doi:10.1016/j.plrev.2004.03.001.
  • Gallos, L. K., Makse, H. A., & Sigman, M. (2012). A small world of weak ties provides optimal global integration of self-similar modules in functional brain networks. Proceedings of the National Academy of Sciences, 109, 2825–2830. doi:10.1073/pnas.1106612109.
  • Gutman, I. & Zhou, B. (2006). Laplacian energy of a graph. Linear Algebra and its Applications, 414, 29–37. doi:10.1016/j.laa.2005.09.008.
  • Hopf, T. A., Colwell, L. J., Sheridan, R., Rost, B., Sander, C., & Marks, D. S. (2012). Three-dimensional structures of membrane proteins from genomic sequencing. Cell, 149, 1607–1621. doi:10.1016/j.cell.2012.04.012.
  • Ipsen, M. & Mikhailov, A. (2002). Evolutionary reconstruction of networks. Physical Review E, 66, 046109. ISSN 1063-651X. doi:10.1103/PhysRevE.66.046109.
  • Ishihama, Y., Schmidt, T., Rappsilber, J., Mann, M., Hartl, F. U., Kerner, M. J., & Frishman, D. (2008). Protein abundance profiling of the escherichia coli cytosol. BMC genomics, 9, 102. doi:10.1186/1471-2164-9-102.
  • Jana, B., Morcos, F., & Onuchic, J. N. (2014). From structure to function: the convergence of structure based models and co-evolutionary information. Physical Chemistry Chemical Physics, 16, 6496–6507. doi:10.1039/C3CP55275F.
  • Kamisetty, H., Ovchinnikov, S., & Baker, D. (2013). Assessing the utility of coevolution-based residue-residue contact predictions in a sequence-and structure-rich era. Proceedings of the National Academy of Sciences, 110, 15674–15679. doi:10.1073/pnas.1314045110.
  • Kloster, K. & Gleich, D.F. (2014). Heat kernel based community detection. Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. pp. 1386–1395. New York, NY: ACM. doi:10.1145/2623330.2623706.
  • Krizhevsky, A., Sutskever, I. & Hinton, G.E. (2012). Imagenet classification with deep convolutional neural networks. In Pereira, F., Burges, J.C., Bottou, L., & Weinberger, K.Q. (Eds.), Advances in Neural Information Processing Systems. (Vol. 25, pp. 1097–1105). Stateline, NV: Curran Associates Inc.
  • Kühn, R. & Van Mourik, J. (2011). Spectra of modular and small-world matrices. Journal of Physics A: Mathematical and Theoretical, 44, 165205. doi:10.1088/1751-8113/44/16/165205.
  • Leitner, D. M. (2008). Energy Flow in Proteins. Annual Review of Physical Chemistry, 59, 233–259. doi:10.1146/annurev.physchem.59.032607.093606.
  • Livi, L., Giuliani, A., &Rizzi, A., (2016). Toward a multilevel representation of protein molecules: comparative approaches to the aggregation, folding propensity problem. Information Sciences, 326, 134–145. doi: 10.1016/j.ins.2015.07.043
  • Livi, L., Giuliani, A. & Sadeghian, A. (2015). Characterization of graphs for protein structure modeling and recognition of solubility. Current Bioinformatics, ArXiv preprint arXiv:1407.8033.
  • Livi, L., Maiorino, E., Pinna, A., Sadeghian, A., Rizzi, A., & Giuliani, A. (2016). Analysis of heat kernel highlights the strongly modular and heat-preserving structure of proteins. Physica A: Statistical Mechanics and its Applications, 441, 199–214. 10.1016/j.physa.2015.08.059
  • Livi, L. & Rizzi, A. (2013). Graph ambiguity. Fuzzy Sets and Systems, 221, 24–47. ISSN 0165-0114. doi:10.1016/j.fss.2013.01.001.
  • Maiorino, E., Livi, L., Giuliani, A., Sadeghian, A. & Rizzi, A. (2015). Multifractal characterization of protein contact networks. Physica A: Statistical Mechanics and its Applications, 428, 302–313. ISSN 0378-4371. doi:10.1016/j.physa.2015.02.026.
  • Marks, D. S., Colwell, L. J., Sheridan, R., Hopf, T. A., Pagnani, A., Zecchina, R., & Sander, C. (2011). Protein 3D structure computed from evolutionary sequence variation. PLoS ONE, 6, e28766. doi:10.1371/journal.pone.0028766.
  • McGraw, P. N. & Menzinger, Michael (2008). Laplacian spectra as a diagnostic tool for network structure and dynamics. Physical Review E, 77, 031102. doi:10.1103/PhysRevE.77.031102.
  • Merris, R. (1994). Laplacian matrices of graphs: a survey. Linear Algebra and its Applications, 10010, 143–176. doi:10.1016/0024-3795(94)90486-3.
  • Mishra, R. & Bhushan, S. (2012). Knot theory in understanding proteins. Journal of Mathematical Biology, 65, 1187–1213. doi:10.1007/s00285-011-0488-3.
  • Mitrović, M. & Tadić, B. (2009). Spectral and dynamical properties in classes of sparse networks with mesoscopic inhomogeneities. Physical Review E, 80, 026123. doi:10.1103/PhysRevE.80.026123.
  • Montgomery, B. (2013). Pettitt. The unsolved "solved-problem" of protein folding. Journal of Biomolecular Structure and Dynamics, 31, 1024–1027. doi:10.1080/07391102.2012.748547.
  • Morcos, F., Jana, B., Hwa, T., & Onuchic, J. N. (2013). Coevolutionary signals across protein lineages help capture multiple protein conformations. Proceedings of the National Academy of Sciences, 110, 20533–20538. doi:10.1073/pnas.1315625110.
  • Morcos, F., Pagnani, A., Lunt, B., Bertolino, A., Marks, D. S., & Sander, C. (2011). and M. Weigt. Direct-coupling analysis of residue coevolution captures native contacts across many protein families. Proceedings of the National Academy of Sciences, 108, E1293–E1301. doi:10.1073/pnas.1111471108.
  • Newman, M. E. J. (2003). The structure and function of complex networks. SIAM Review, 45, 167–256. doi:10.1137/S003614450342480.
  • Newman, M. E. J. (2006). Modularity and community structure in networks. Proceedings of the National Academy of Sciences, 103, 8577–8582. doi:10.1073/pnas.0601602103.
  • Onofrio, A., Parisi, G., Punzi, G., Todisco, S., Di Noia, M. A., Bossis, F., & Turi, A. (2014). and C.L. Pierri. Distance-dependent hydrophobic-hydrophobic contacts in protein folding simulations. Physical Chemistry Chemical Physics, 16, 18907–18917. doi:10.1039/C4CP01131G.
  • Orozco, M. (2014). A theoretical view of protein dynamics. Chemical Society Reviews, 43, 5051–5066. doi:10.1039/C3CS60474H.
  • Paci, P., Di Paola, L., Santoni, D., De Ruvo, M., & Giuliani, A. (2012). Structural and functional analysis of hemoglobin and serum albumin through protein long-range interaction networks. Current Proteomics, 9, 160–166. doi:10.2174/157016412803251815.
  • Peixoto, T.P. (2013). Eigenvalue spectra of modular networks. Physical Review Letters, 111, 098701. ISSN 0031-9007. doi:10.1103/PhysRevLett.111.098701.
  • Penner, R. C., Knudsen, M., Wiuf, C., & Andersen, J. E. (2010). Fatgraph models of proteins. Communications on Pure and Applied Mathematics, 63, 1249–1297. doi:10.1002/cpa.20340.
  • Penner, R. C., Knudsen, M., Wiuf, C., & Andersen, J. E. (2011). An algebro-topological description of protein domain structure. PLoS one, 6, e19670. doi:10.1371/journal.pone.0019670.
  • Randić, M., Zupan, J., Balaban, A. T., Vikić-Topić, D., & Plavšić, D. (2011). Graphical representation of proteins. Chemical Reviews, 111, 790–862. doi:10.1021/cr800198j.
  • Rozenfeld, H. D., Song, C., & Makse, H. A. (2010). Small-world to fractal transition in complex networks: A renormalization group approach. Physical Review Letters, 104, 025701. doi:10.1103/PhysRevLett.104.025701.
  • Sah, P., Singh, L. O., Clauset, A., & Bansal, S. (2014). Exploring community structure in biological networks with random graphs. BMC Bioinformatics, 15, 220. doi:10.1186/1471-2105-15-220.
  • Segal, M. R. (2009). A novel topology for representing protein folds. Protein Science, 18, 686–693. doi:10.1002/pro.90.
  • Skolnick, J. (2006). In quest of an empirical potential for protein structure prediction. Current Opinion in Structural Biology, 16, 166–171. doi:10.1016/j.sbi.2006.02.004.
  • Skwark, M. J., Raimondi, D., Michel, M., & Elofsson, A. (2014). Improved contact predictions using the recognition of protein like contact patterns. PLoS Computational Biology, 10, e1003889. doi:10.1371/journal.pcbi.1003889.
  • Tasdighian, S., Di Paola, L., De Ruvo, M., Paci, P., Santoni, D., Palumbo, P., Mei, G., ..., Giuliani, A. (2013). Modules identification in protein structures: The topological and geometrical solutions. Journal of Chemical Information and Modeling , 54, 159–168. doi:10.1021/ci400218v.
  • van Dam, E. R. & Haemers, W. H. (2009). Developments on spectral characterizations of graphs. Discrete Mathematics, 309, 576–586. doi:10.1016/j.disc.2008.08.019.
  • Vassura, M., Margara, L., Di Lena, P., Medri, F., Fariselli, P., & Casadio, R. (2008). Reconstruction of 3D structures from protein contact maps. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 5, 357–367. doi:10.1109/TCBB.2008.27.
  • Vendruscolo, M., Paci, E., Dobson, C. M., & Karplus, M. (2001). Three key residues form a critical contact network in a protein folding transition state. Nature, 409, 641–645. doi:10.1038/35054591.
  • Wolynes, P.G. (2014). Evolution, energy landscapes and the paradoxes of protein folding. Biochimie, 30, 50–56. ISSN 0300-9084. doi:10.1016/j.biochi.2014.12.007.
  • Xiao, B., Hancock, E.R. & Wilson, R.C. (2009). Graph haracteristics from the heat kernel trace. Pattern Recognition, 42, 2589–2606. ISSN 0031-3203. doi:10.1016/j.patcog.2008.12.029.
  • Xu, D. & Zhang, Y. (2012). Ab initio protein structure assembly using continuous structure fragments and optimized knowledge-based force field. Proteins: Structure, Function, and Bioinformatics, 80, 1715–1735. doi:10.1002/prot.24065.
  • Yan, W., Zhou, J., Sun, M., Chen, J., Hu, G., & Shen, B. (2014). The construction of an amino acid network for understanding protein structure and function. Amino Acids, 46, 1419–1439. doi:10.1007/s00726-014-1710-6.
  • Zhang, X., Nadakuditi, R. R., & Newman, M. E. J. (2014). Spectra of random graphs with community structure and arbitrary degrees. Physical Review E, 89, 042816.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.