149
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Structure–function discrepancy in Clostridium botulinum C3 toxin for its rational prioritization as a subunit vaccine

, &
Pages 1317-1329 | Received 25 Mar 2015, Accepted 28 Jul 2015, Published online: 02 Sep 2015

References

  • Aktories, K., Jung, M., Bohmer, J., Fritz, G., Vandekerckhove, J., & Just, I. (1995). Studies on the active-site structure of C3-like exoenzymes: Involvement of glutamic acid in catalysis of ADP-ribosylation. Instrumentation en biochimie clinique, 77, 326–332.
  • Aktories, K., Lang, A. E., Schwan, C., & Mannherz, H. G. (2011). Actin as target for modification by bacterial protein toxins. FEBS Journal, 278, 4526–4543.10.1111/j.1742-4658.2011.08113.x
  • Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., & Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Research, 25, 3389–3402.10.1093/nar/25.17.3389
  • Anniballi, F., Auricchio, B., Delibato, E., Antonacci, M., De Medici, D., & Fenicia, L. (2012). Multiplex real-time PCR SYBR Green for detection and typing of group III Clostridium botulinum. Veterinary Microbiology, 154, 332–338.10.1016/j.vetmic.2011.07.018
  • Barbieri, J. T., Mueller, M. M. D., Rappuoli, R., & Collier, R. J. (1989). Photolabeling of glu-129 of the S-I subunit of pertussis toxin with NAD. Infection and Immunity, 57, 3549–3554.
  • Benkert, P., Tosatto, S. C., & Schomburg, D. (2008). QMEAN: A comprehensive scoring function for model quality assessment. Proteins: Structure, Function, and Bioinformatics, 71, 261–277.10.1002/prot.v71:1
  • Biasini, M., Bienert, S., Waterhouse, A., Arnold, K., Studer, G., Schmidt, T., … Schwede, T. (2014). SWISS-MODEL: Modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Research, 42, W252–W258.10.1093/nar/gku340
  • Böhmer, J., Jung, M., Sehr, P., Fritz, G., Popoff, M., Just, I., & Aktories, K. (1996). Active site mutation of the C3-like ADP-ribosyltransferase from Clostridium limosum–analysis of glutamic acid 174. Biochemistry, 35, 282–289.
  • Carroll, S. F., & Collier, R. J. (1984). NAD binding site of diphtheria toxin: Identification of a residue within the nicotinamide subsite by photochemical modification with NAD. Proceedings of the National Academy of Sciences, 81, 3307–3311.10.1073/pnas.81.11.3307
  • Carroll, S. F., & Collier, R. J. (1987). Active site of Psemhmumas aeruginosa exo-toxin A. Glutamic acid 553 is photolabeled by NAD and shows functional homology with glutamic acid 148 of diphtheria toxin. Journal of Biological Chemistry, 262, 8707–8871.
  • Chakrabarti, S., & Panchenko, A. R. (2010). Structural and functional roles of coevolved sites in proteins. PLoS ONE, 5, e8591.10.1371/journal.pone.0008591
  • Chardin, P., Boquet, P., Madaule, P., Popoff, M. R., Rubin, E. J., & Gill, D. M. (1989). The mammalian G protein rho C is ADP ribosylated by Clostridium botulinum exoenzyme C3 and affects actin microfilament in Vero cells. EMBO Journal, 8, 1087–1092.
  • Chavan, A. J., Nemoto, Y., Narumiya, S., Kozaki, S., & Haley, B. E. (1992). NAD+ binding site of Clostridium botulinum C3 ADP-ribosyltransferase. Identification of peptide in the adenine ring binding domain using 2-azido NAD. Journal of Biological Chemistry, 267, 14866–14870.
  • Chellapandi, P. (2014). Structural-functional integrity of hypothetical proteins identical to ADP-ribosylation Superfamily upon point mutations. Protein & Peptide Letters, 21, 722–735.
  • Chellapandi, P., Sakthi Shree, S., & Bharathi, M. (2013). Phylogenetic approach for inferring the origin and functional evolution of bacterial ADP-ribosylation superfamily. Protein & Peptide Letters, 20, 1054–1065.
  • Choi, S. S., & Hannenhalli, S. (2013). Three independent determinants of protein evolutionary rate. Journal of Molecular Evolution., 76, 98–111.10.1007/s00239-013-9543-6
  • Cunha, C. E., Moreira, G. M., Salvarani, F. M., Neves, M. S., Lobato, F. C., Dellagostin, O. A., & Conceição, F. R. (2014). Vaccination of cattle with a recombinant bivalent toxoid against botulism serotypes C and D. Vaccine, 32, 214–216.10.1016/j.vaccine.2013.11.025
  • Dahlsten, E., Korkeala, H., Somervuo, P., & Lindström, M. (2008). PCR assay for differentiating between Group I (proteolytic) and Group II (nonproteolytic) strains of Clostridium botulinum. International Journal of Food Microbiology, 124, 108–111.10.1016/j.ijfoodmicro.2008.02.018
  • de Brevern, A. G., Bornot, A., Craveur, P., Etchebest, C., & Gelly, J. C. (2012). PredyFlexy: Flexibility and local structure prediction from sequence. Nucleic Acids Research, 40, W317–W322.10.1093/nar/gks482
  • Dmochewitz, L., Förtsch, C., Zwerger, C., Vaeth, M., Felder, E., Huber-Lang, M., & Barth, H. (2013). A recombinant fusion toxin based on enzymatic inactive C3bot1 selectively targets macrophages. PLoS ONE, 8, e54517.10.1371/journal.pone.0054517
  • Evans, H. R., Holloway, D. E., Sutton, J. M., Ayriss, J., Shone, C. C., & Acharya, K. R. (2004). C3 exoenzyme from Clostridium botulinum: Structure of a tetragonal crystal form and a reassessment of NAD-induced flexure. Acta Crystallographica, 60, 1502–1505.
  • Gil, L. A., Cunha, C. E., Moreira, G. M., Salvarani, F. M., Assis, R. A., Lobato, F. C., … Conceição, F. R. (2013). Production and evaluation of a recombinant chimeric vaccine against Clostridium botulinum neurotoxin types C and D. PLoS ONE, 8, e69692.10.1371/journal.pone.0069692
  • Gromiha, M. M., Thangakani, A. M., & Selvaraj, S. (2006). FOLD-RATE: Prediction of protein folding rates from amino acid sequence. Nucleic Acids Research, 34, W70–W74.10.1093/nar/gkl043
  • Hammes, G. G., Benkovic, S. J., & Hammes-Schiffer, S. (2011). Flexibility, diversity, and cooperativity: Pillars of enzyme catalysis. Biochemistry., 50, 10422–10430.10.1021/bi201486f
  • Han, S., Arvai, A. S., Clancy, S. B., & Tainer, J. A. (2001). Crystal structure and novel recognition motif of Rho ADP-ribosylating C3 exoenzyme from Clostridium botulinum: structural insights for recognition specificity and catalysis. Journal of Molecular Biology, 305, 95–107.10.1006/jmbi.2000.4292
  • Han, S., & Tainer, J. A. (2002). The ARTT motif and a unified structural understanding of substrate recognition in ADP-ribosylating bacterial toxins and eukaryotic ADP-ribosyltransferases. International Journal of Medical Microbiology, 291, 523–429.
  • Hassan, K. A., Tetu, S. G., Elbourne, L. D., Johnson, E. A., & Paulsen, I. T. (2013). Genome sequence of the Group III Clostridium botulinum strain Eklund-C. Genome Announcements, 1, E0004413.
  • Hatheway, C. L. (1995). Botulism: The present status of the disease, In M. Cesare (Ed.), Clostridial neurotoxins: The molecular pathogenesis of Tetanus and Botulism (pp. 55–75). Berlin Heidelberg: Springer Verlag.
  • Heiny, A. T., Miotto, O., Srinivasan, K. N., Khan, A. M., Zhang, G. L., Brusic, V., Tan, T.W., ... August, J.T. (2007). Evolutionarily conserved protein sequences of Influenza A viruses, avian and human, as vaccine Targets. PLoS ONE., 2, e1190.10.1371/journal.pone.0001190
  • Ho, B. K., & Agard, D. A. (2010). Conserved tertiary couplings stabilize elements in the PDZ fold, leading to characteristic patterns of domain conformational flexibility. Protein Science, 19, 398–411.
  • Holbourn, K. P., Sutton, J. M., Evans, H. R., Shone, C. C., & Acharya, K. R. (2005). Molecular recognition of an ADP-ribosylating Clostridium botulinum C3 exoenzyme by RalA GTPase. Proceedings of the National Academy of Sciences, 102, 5357–5362.10.1073/pnas.0501525102
  • Huang, L.-T., & Gromiha, M. M. (2012). Real value prediction of protein folding rate change upon point mutation. Journal of Computer-Aided Molecular Design, 26, 339–347.10.1007/s10822-012-9560-3
  • Jeong, C.-S., & Kim, D. (2012). Reliable and robust detection of coevolving protein residues. Protein Engineering Design and Selection, 25, 705–713.10.1093/protein/gzs081
  • Jung, M., Just, I., van Damme, J., Vandekerckhove, J., & Aktories, K. (1993). NAD-binding site of the C3-like ADP-ribosyltransferase from Clostridium limosum. Journal of Biological Chemistry, 268, 23215–23218.
  • Koide, S., Yang, X., Huang, X., Dunn, J. J., & Luft, B. J. (2005). Structure-based design of a second-generation Lyme disease vaccine based on a C-terminal fragment of Borrelia burgdorferi OspA. Journal of Molecular Biology., 350, 290–299.10.1016/j.jmb.2005.04.066
  • Kowarsch, A., Fuchs, A., Frishman, D., & Pagel, P. (2010). Correlated mutations: A hallmark of phenotypic amino acid substitutions. PLoS Computational Biology, 6, e1000923.10.1371/journal.pcbi.1000923
  • Krüger, M., Skau, M., Shehata, A. A., & Schrödl, W. (2013). Efficacy of Clostridium botulinum types C and D toxoid vaccination in Danish cows. Anaerobe, 23, 97–101.10.1016/j.anaerobe.2013.06.011
  • Kuhlman, B., Dantas, G., Ireton, G. C., Varani, G., Stoddard, B. L., & Baker, D. (2003). Design of a novel globular protein fold with atomic-level accuracy. Science, 302, 1364–1368.10.1126/science.1089427
  • Kuzmanic, A., & Zagrovic, B. (2010). Determination of ensemble-average pairwise root mean-square deviation from experimental B-factors. Biophysical Journal, 98, 861–871.10.1016/j.bpj.2009.11.011
  • Lee, B.-C., & Kim, D. (2009). A new method for revealing correlated mutations under the structural and functional constraints in proteins. Bioinformatics, 25, 2506–2513.10.1093/bioinformatics/btp455
  • Marchler-Bauer, A., Derbyshire, M. K., Gonzales, N. R., Lu, S., Chitsaz, F., Geer, L. Y., … Bryant, S. H. (2015). CDD: NCBI's conserved domain database. Nucleic Acids Research, 43, D222–D226.10.1093/nar/gku1221
  • Marks, D. S., Hopf, T. A., & Sander, C. (2012). Protein structure prediction from sequence variation. Nature Biotechnology, 30, 1072–1080.10.1038/nbt.2419
  • Mayrose, I., Graur, D., Tal, B. N., & Pupko, T. (2004). Comparison of site-specific rate-inference methods for protein sequences: Empirical Bayesian methods are superior. Molecular Biology and Evolution, 21, 1781–1791.10.1093/molbev/msh194
  • Ménétrey, J., Flatau, G., Boquet, P., Ménez, A., & Stura, E. A. (2008). Structural basis for the NAD-hydrolysis mechanism and the ARTT-loop plasticity of C3 exoenzymes. Protein Science, 17, 878–886.10.1110/ps.073398508
  • Menetrey, J., Flatau, G., Stura, E. A., Charbonnier, J. B., Gas, F., Teulon, J. M., … Menez, A., (2002). NAD binding induces conformational changes in Rho ADP-ribosylating Clostridium botulinum C3 exoenzyme. Journal of Biological Chemistry, 277, 30950–30957.10.1074/jbc.M201844200
  • Mizuguchi, K., Deane, C. M., Blundell, T. L., Johnson, M. S., & Overington, J. P. (1998). JOY: Protein sequence-structure representation and analysis. Bioinformatics, 14, 617–623.10.1093/bioinformatics/14.7.617
  • Moriishi, K., Syuto, B., Saito, M., Oguma, K., Fujii, N., Abe, N., & Naiki, M. (1993). Two different types of ADP-ribosyltransferase C3 from Clostridium botulinum type D lysogenized organisms. Infection and Immunity, 61, 5309–5314.
  • Oguma, K. (1976). The stability of toxigenicity in Clostridium botulinum types C and D. Journal of General Microbiology, 92, 67–75.10.1099/00221287-92-1-67
  • Parthiban, V., Gromiha, M. M., & Schomburg, D. (2006). CUPSAT: Prediction of protein stability upon point mutations. Nucleic Acids Research, 34, W239–W242.10.1093/nar/gkl190
  • Paterson, H. F., Self, A. J., Garrett, M. D., Just, I., Aktories, K., & Hall, A. (1990). Microinjection of recombinant p21rho induces rapid changes in cell morphology. The Journal of Cell Biology, 111, 1001–1007.10.1083/jcb.111.3.1001
  • Pautsch, A., Vogelsgesang, M., Tränkle, J., Herrmann, C., & Aktories, K. (2005). Crystal structure of the C3bot–RalA complex reveals a novel type of action of a bacterial exoenzyme. The EMBO Journal, 24, 3670–3680.10.1038/sj.emboj.7600813
  • Pavelka, A., Chovancova, E., & Damborsky, J. (2009). HotSpot Wizard: A web server for identification of hot spots in protein engineering. Nucleic Acids Research, 37, W376–W383.10.1093/nar/gkp410
  • Payne, J. H., Hogg, R. A., Otter, A., Roest, H. I., & Livesey, C. T. (2011). Emergence of suspected type D botulism in ruminants in England and Wales (2001 to 2009), associated with exposure to broiler litter. Veterinary Research, 168, 640.
  • Przedpelski, A., Tepp, W. H., Kroken, A. R., Fu, Z., Kim, J. J., Johnson, E. A., & Barbieri, J. T. (2013). Enhancing the protective immune response against botulism. Infection and Immunity, 81, 2638–2644.10.1128/IAI.00382-13
  • Pupko, T., Bell, R. E., Mayrose, I., Glaser, F., & Tal, N. B. (2004). Rate4Site: An algorithmic tool for the identification of functional regions in proteins by surface mapping of evolutionary determinants within their homologues. Bioinformatics, 18, S71–S77.
  • Raih, M. F., Ahmad, S., Zheng, R., & Mohamed, R. (2005). Solvent accessibility in native and isolated domain environments: General features and implications to interface predictability. Biophysical Chemistry, 114, 63–69.10.1016/j.bpc.2004.10.005
  • Rohrbeck, A., Kolbe, T., Hagemann, S., Genth, H., & Just, I. (2012). Distinct biological activities of C3 and ADP-ribosyltransferase-deficient C3-E174Q. FEBS Journal, 279, 2657–2671.10.1111/ejb.2012.279.issue-15
  • Saito, Y., Nemoto, Y., Ishizaki, T., Watanabe, N., Morii, N., & Narumiya, S. (1995). Identification of Glu173 as the critical amino acid residue for the ADP-ribosyltransferase activity of Clostridium botulinum C3 exoenzyme. FEBS Letters, 371, 105–109.10.1016/0014-5793(95)00851-Y
  • Sakaguchi, Y., Hayashi, T., Kurokawa, K., Nakayama, K., Oshima, K., Fujinaga, Y., … Oguma, K. (2005). The genome sequence of Clostridium botulinum type C neurotoxin-converting phage and the molecular mechanisms of unstable lysogeny. Proceedings of the National Academy of Sciences, 102, 17472–17477.10.1073/pnas.0505503102
  • Sandler, I., Abu-Qarn, M., & Aharoni, A. (2013). Protein co-evolution: How do we combine bioinformatics and experimental approaches? Molecular Biosystems., 9, 175–181.10.1039/C2MB25317H
  • Saraboji, K., Gromiha, M. M., & Ponnuswamy, M. N. (2005). Relative importance of secondary structure and solvent accessibility to the stability of protein mutants. Computational Biology and Chemistry, 29, 25–35.10.1016/j.compbiolchem.2004.12.002
  • Schechter, L. M., Valenta, J. C., Schneider, D. J., Collmer, A., & Sakk, E. (2012). Functional and computational analysis of amino acid patterns predictive of type III secretion system substrates in Pseudomonas syringae. PLoS ONE, 7, e36038.10.1371/journal.pone.0036038
  • Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., … Ideker, T. (2003). Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Research, 13, 2498–2504.10.1101/gr.1239303
  • Skarin, H., Håfström, T., Westerberg, J., & Segerman, B. (2011). Clostridium botulinum. group III: A group with dual identity shaped by plasmids, phages and mobile elements. BMC Genomics, 12, 185–198.10.1186/1471-2164-12-185
  • Skarin, H., Lindberg, A., Blomqvist, G., Aspán, A., & Båverud, V. (2010). Molecular characterization and comparison of Clostridium botulinum type C avian strains. Avian Pathology, 39, 511–518.10.1080/03079457.2010.526923
  • Skarin, H., & Segerman, B. (2014). Plasmidome interchange between Clostridium botulinum, Clostridium novyi and Clostridium haemolyticum converts strains of independent lineages into distinctly different pathogens. PLoS ONE, 9, e107777.10.1371/journal.pone.0107777
  • Smith, A. L. (2009). Botulism and vaccines for its prevention. Vaccine, 27, 1333–1339.
  • Smith, C. A., & Kortemme, T. (2008). Backrub-like backbone simulation recapitulates natural protein conformational variability and improves mutant side-chain prediction. Journal of Molecular Biology, 380, 742–756.10.1016/j.jmb.2008.05.023
  • Studer, R. A., Dessailly, B. H., & Orengo, C. A. (2013). Residue mutations and their impact on protein structure and function: detecting beneficial and pathogenic changes. Biochemical Journal, 449, 581–594.10.1042/BJ20121221
  • Sumathi, K., Ananthalakshmi, P., Roshan, M. N. A. Md., & Sekar, K. (2006). 3dSS: 3D structural superposition. Nucleic Acids Research, W128–W132. doi:10.1093/nar/gkl036
  • Travers, S. A., Tully, D. C., McCormack, G. P., & Fares, M. A. (2007). A study of the coevolutionary patterns operating within the env Gene of the HIV-1 group M subtypes. Molecular Biology and Evolution, 24, 2787–2801.10.1093/molbev/msm213
  • Wan, Y., Ren, X., Ren, Y., Wang, J., Hu, Z., Xie, X., & Xu, J. (2014). As a genetic adjuvant, CTA improves the immunogenicity of DNA vaccines in an ADP-ribosyltransferase activity – and IL-6-dependent manner. Vaccine, 32, 2173–2180.10.1016/j.vaccine.2014.02.056
  • Wilde, C., & Aktories, K. (2001). The Rho-ADP-ribosylating C3 exoenzyme from Clostridium botulinum and related C3-like transferases. Toxicon, 39, 1647–1660.10.1016/S0041-0101(01)00152-0
  • Wilde, C., Genth, H., Aktories, K., & Just, I. (2000). Recognition of RhoA by Clostridium botulinum C3 Exoenzyme. Journal of Biological Chemistry, 275, 16478–16483.10.1074/jbc.M910362199
  • Worth, C. L., Preissner, R., & Blundell, T. L. (2011). SDM – a server for predicting effects of mutations on protein stability and malfunction. Nucleic Acids Research, 39, W215–W222.10.1093/nar/gkr363
  • Xiao, J. F., Li, Z. S., & Sun, C. C. (2004). Homology modeling and molecular dynamics studies of a novel C3-like ADP-ribosyltransferase. Bioorganic & Medicinal Chemistry, 12, 2035–2041.
  • Xu, D., & Zhang, Y. (2011). Improving the physical realism and structural accuracy of protein models by a two-step atomic-level energy minimization. Biophysical Journal, 101, 2525–2534.10.1016/j.bpj.2011.10.024
  • Yasugi, M., Kubota-Koketsu, R., Yamashita, A., Kawashita, N., Du, A., Sasaki, T., … Ikuta, K. (2013). Human monoclonal antibodies broadly neutralizing against Influenza B virus. PLoS Pathogens, 9, e1003150.10.1371/journal.ppat.1003150
  • Zhao, Y., Wang, Y., Gao, Y., Li, G., & Huang, J. (2015). Integrated analysis of residue coevolution and protein structures capture key protein sectors in HIV-1 proteins. PLoS ONE, 10, e0117506.10.1371/journal.pone.0117506

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.