519
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

An in silico approach towards the identification of novel inhibitors of the TLR-4 signaling pathway

, , &
Pages 1345-1362 | Received 28 May 2015, Accepted 30 Jul 2015, Published online: 02 Sep 2015

References

  • Akira, S., Takeda, K., & Kaisho, T. (2001). Toll-like receptors: Critical proteins linking innate immunity and acquired immunity. Nature Immunology, 2, 675–680. doi:10.1038/90609
  • Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215, 403–410. doi:10.1016/S0022-2836(05)80360-2
  • Alvarez-Garcia, D., & Barril, X. (2014). Relationship between protein flexibility and binding: Lessons for structure-based drug design. Journal of Chemical Theory and Computation, 10, 2608–2614. doi:10.1021/ct500182z
  • Baker, N. A., Sept, D., Joseph, S., Host, M. J., & McCammon, J. A. (2001). Electrostatics of nanosystems: Applications to microtubules and the ribosome. Proceedings of the National Academy of Sciences, 98, 10037–10041. Retrieved from www.pnas.orgy/cgi/doi/10.1073/pnas.181342398
  • Bartfai, T., Behrens, M. M., Gaidarova, S., Pemberton, J., Shivanyuk, A., & Rebek, J., Jr. (2003). A low molecular weight mimic of the Toll/IL-1 receptor/resistance domain inhibits IL-1 receptor-mediated responses. Proceedings of the National Academy of Sciences, 100, 7971–7976.10.1073/pnas.0932746100
  • Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., … Bourne, P. E. (2000). The protein data bank. Nucleic Acids Research, 28, 235–242. doi:10.1093/nar/28.1.235
  • Bovijn, C., Ulrichts, P., De Smet, A. S., Catteeuw, D., Beyaert, R., Tavernier, J., & Peelman, F.(2012). Identification of interaction sites for dimerization and adapter recruitment in Toll/interleukin-1 receptor (TIR) domain of Toll-like receptor 4. Journal of Biological Chemistry, 287, 4088–4098.10.1074/jbc.M111.282350
  • Bowie, A. G., & Unterholzner, L. (2008). Viral evasion and subversion of pattern-recognition receptor signalling. Nature Reviews Immunology, 8, 911–922. doi:10.1038/nri2436
  • Bussi, G., Donadio, D., & Parrinello, M. (2007). Canonical sampling through velocity-rescaling. The Journal of Chemical Physics, 126, 014101–014107.10.1063/1.2408420
  • Comeau, S. R., Gatchell, D. W., Vajda, S., & Camacho, C. J. (2004). ClusPro. an automated docking and discrimination method for the prediction of protein complexes. Bioinformatics, 20, 45–50.10.1093/bioinformatics/btg371
  • Couture, L. A., Piao, W., Ru, L. W., Vogel, S. N., & Toshchakov, V. Y. (2012). Targeting Toll-like receptor (TLR) signaling by Toll/interleukin-1 receptor (TIR) domain-containing adapter protein/MyD88 adapter-like (TIRAP/Mal)-derived decoy peptides. Journal of Biological Chemistry, 287, 24641–24648. doi:10.1074/jbc.M112.360925
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98, 10089–10092.10.1063/1.464397
  • Dominguez, C., Boelens, R., & Bonvin, A. M. J. J. (2003). HADDOCK: A protein−protein docking approach based on biochemical or biophysical information. Journal of the American Chemical Society, 125, 1731–1737.10.1021/ja026939x
  • Dunne, A., & O’Neill, L. A. (2003). The interleukin-1 receptor/Toll-like receptor superfamily: Signal transduction during inflammation and host defense. Science Signaling, 171, re3.
  • Edgar, R. C. (2004). MUSCLE: Multiple sequence alignment with high accuracy and high throughput Nucleic Acids Research, 32, 1792–1797. doi:10.1093/nar/gkh340
  • Eisenberg, D., Lüthy, R., & Bowie, J. U. (1997). VERIFY3D assessment of protein models with three-dimensional profiles. Methods in Enzymology, 277, 396–404.10.1016/S0076-6879(97)77022-8
  • Enokizono, Y., Kumeta, H., Funami, K., Horiuchi, M., Sarmiento, J., Yamashita, K., … Inagaki, F. (2013). Structures and interface mapping of the TIR domain-containing adaptor molecules involved in interferon signaling. Proceedings of the National Academy of Sciences, 110, 19908–19913.
  • Fedosyuk, S., Grishkovskaya, I., de Almeida Ribeiro, E., Jr., & Skern, T. (2014). Characterization and structure of the vaccinia virus NF-ĸB antagonist A46. Journal of Biological Chemistry, 289, 3749–3762. doi:10.1074/jbc.M113.512756
  • Fitzgerald, K. A., Palsson-McDermott, E. M., Bowie, A. G., Jefferies, C. A., Mansell, A. S., Brady, G., … O’Neill, L. A. (2001). Mal (MyD88-adapter-like) is required for Toll-like receptor-4 signal transduction. Nature, 413, 78–83.10.1038/35092578
  • Fitzgerald, K. A., Rowe, D. C., Barnes, B. J., Caffrey, D. R., Visintin, A., Latz, E., … Golenbock, D. T. (2003). LPS-TLR4 signaling to IRF-3/7 and NF-kappaB involves the toll adapters TRAM and TRIF. Journal of Experimental Medicine, 198, 1043–1055.10.1084/jem.20031023
  • Friesner, R. A., Banks, J. L., Murphy, R. B., Halgren, T. A., Klicic, J. J., Mainz, D. T., … Shenkin, P. S. (2004). Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. Journal of Medicinal Chemistry, 47, 1739–1749.10.1021/jm0306430
  • Friesner, R. A., Murphy, R. B., Repasky, M. P., Frye, L. L., Greenwood, J. R., Halgren, T. A., … Mainz, D. T. (2006). Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein−ligand complexes. Journal of Medicinal Chemistry, 49, 6177–6196.10.1021/jm051256o
  • Garzon, J. I., Lopez-Blanco, J. R., Pons, C., Kovacs, J., Abagyan, R., Fernandez-Recio, J., & Chacon P. (2009). FRODOCK. A new approach for fast rotational protein-protein docking. Bioinformatics, 25, 2544–2551.10.1093/bioinformatics/btp447
  • Glaser, F., Pupko, T., Paz, I., Bell, R. E., Bechor-Shental, D., Martz, E., & Ben-Tal, N. (2003). ConSurf. Identification of functional regions in proteins by surface mapping of phylogenetic information. Bioinformatics, 19, 163–164.10.1093/bioinformatics/19.1.163
  • Guerois, R., Nielsen, J. E., & Serrano, L. (2002). Predicting changes in the stability of proteins and protein complexes: A study of more than 1000 mutations. Journal of Molecular Biology, 320, 369–387.10.1016/S0022-2836(02)00442-4
  • Halgren, T. A., Murphy, R. B., Friesner, R. A., Beard, H. S., Frye, L. L., Pollard, W. T., & Banks, J. L. (2004). Glide: A new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. Journal of Medicinal Chemistry, 47, 1750–1759.10.1021/jm030644s
  • Hess, B., Bekker, H., Berendsen, H. J. C., & Fraaije, J. G. E. M. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18, 1463–1472.10.1002/(ISSN)1096-987X
  • Horng, T., Barton, G. M., Flavell, R. A., & Medzhitov, R. (2002). The adaptor molecule TIRAP provides signalling specificity for Toll-like receptors. Nature, 420, 329–333. doi:10.1038/nature01180
  • Impact version 5.9. New York, NY: Schrödinger, LLC. 2013.
  • Irwin, J. J., & Shoichet, B. K. (2005).ZINC − A free database of commercially available compounds for virtual screening. Journal of Chemical Information and Modeling, 45, 177–182.10.1021/ci049714+
  • Jang, T. H., & Park, H. H. (2014). Crystal structure of TIR domain of TLR6 reveals novel dimeric interface of TIR–TIR interaction for Toll-like receptor signaling pathway. Journal of Molecular Biology, 426, 3305–3313. doi:10.1016/j.jmb.2014.07.024
  • Kagan, J. C., & Medzhitov, R. (2006). Phosphoinositide-mediated adaptor recruitment controls Toll-like receptor signaling. Cell, 125, 943–955.10.1016/j.cell.2006.03.047
  • Kagan, J. C., Su, T., Horng, T., Chow, A., Akira, S., & Medzhitov, R. (2008). TRAM couples endocytosis of Toll-like receptor 4 to the induction of interferon-β. Nature Immunology, 9, 361–368.10.1038/ni1569
  • Kang, J. Y., Lee J. O. (2011). Structural biology of the Toll-like receptor family. Annual Review of Biochemistry, 80, 917–941.10.1146/annurev-biochem-052909-141507
  • Katoh, K., Misawa, K., Kuma, K., & Miyata, T. (2002). MAFFT. A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research, 30, 3059–3066.10.1093/nar/gkf436
  • Kawai, T., & Akira, S. (2010). The role of pattern-recognition receptors in innate immunity: Update on Toll-like receptors. Nature Immunology, 11, 373–384.
  • Kim, D. E., Chivian, D., & Baker, D. (2004). Protein structure prediction and analysis using the Robetta server. Nucleic Acids Research, 32, W526–W531.10.1093/nar/gkh468
  • Kim, Y., Lee, H., Heo, L., Seok, C., & Choe, J. (2014). Structure of vaccinia virus A46, an inhibitor of TLR4 signaling pathway, shows the conformation of VIPER motif. Protein Science, 23, 906–914. doi:10.1002/pro.2472
  • Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK – A program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26, 283–291.10.1107/S0021889892009944
  • Lester, S. N., & Li, K. (2014). Toll-like receptors in antiviral innate immunity. Journal of Molecular Biology, 426, 1246–1264. doi:10.1016/j.jmb.2013.11.02410.1016/j.jmb.2013.11.024
  • Lin, Z., Lu, J., Zhou, W., & Shen, Y. (2012). Structural insights into TIR domain specificity of the bridging adaptor mal in TLR4 signaling. PLoS ONE, 7, e34202. doi:10.1371/journal.pone.0034202
  • Loiarro, M., Sette, C., Gallo, G., Ciacci, A., Fanto, N., Mastroianni, D., … Ruggiero, V. (2005). Peptide-mediated interference of TIR domain dimerization in MyD88 inhibits interleukin-1-dependent activation of NF-kappaB. Journal of Biological Chemistry, 280, 15809–15814.10.1074/jbc.C400613200
  • Lysakova-Devine, T., Keogh, B., Harrington, B., Nagpal, K., Halle, A., Golenbock, D. T., … Bowie, A. G. (2010). Viral inhibitory peptide of TLR4, a peptide derived from vaccinia protein A46, specifically inhibits TLR4 by directly targeting MyD88 adaptor-like and TRIF-related adaptor molecule. The Journal of Immunology, 185, 4261–4271.10.4049/jimmunol.1002013
  • Malhotra, S., Sankar, K., & Sowdhamini, R. (2014). Structural interface parameters are discriminatory in recognising near-native poses of protein-protein interactions. PLoS ONE, 9, e80255. doi:10.1371/journal.pone.0080255
  • Medzhitov, R., Preston-Hurlburt, P., & Janeway, C. A., Jr. (1997). A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature, 388, 394–397.
  • Menke, M., Berger, B., & Cowen, L. (2008). Matt: Local flexibility aids protein multiple structure alignment. PLoS Computational Biology, 4, e10.10.1371/journal.pcbi.0040010
  • Mistry, P., Laird, M. H. W., Schwarz, R. S., Greene, S., Dyson, T., Snyder, G. A., … Vogel, S. N. (2015). Inhibition of TLR2 signaling by small molecule inhibitors targeting a pocket within the TLR2 TIR domain. Proceedings of the National Academy of Sciences, 112, 5455–5460.10.1073/pnas.1422576112
  • Notredame, C., Higgins, D. G., & Heringa, J. (2000). T-coffee: A novel method for fast and accurate multiple sequence alignment. Journal of Molecular Biology, 302, 205–217.10.1006/jmbi.2000.4042
  • Núñez Miguel, R., Wong, J., Westoll, J. F., Brooks, H. J., O’Neill, L. A., Gay, N. J., … Monie, T. P. (2007). A dimer of the Toll-like receptor-4 cytoplasmic domain provides a specific scaffold for the recruitment of signaling adaptor proteins. PLoS ONE, 2, e(788).
  • Nyman, T., Stenmark, P., Flodin, S., Johansson, I., Hammarström, M., & Nordlund, P. (2008). The crystal structure of the human Toll-like receptor 10 cytoplasmic domain reveals a putative signaling dimer. Journal of Biological Chemistry, 283, 11861–11865.10.1074/jbc.C800001200
  • O’Neill, L. A. (2003). Therapeutic targeting of Toll-like receptors for inflammatory and infectious diseases. Current Opinion in Pharmacology, 3, 396–403.10.1016/S1471-4892(03)00080-8
  • O’Neill, L. A., & Bowie, A. G. (2007). The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nature Reviews Immunology, 7, 353–364. doi:10.1038/nri2079
  • O’Neill, L. A., Bryant, C. E., & Doyle, S. L.(2009). Therapeutic targeting of Toll-like receptor for infectious and inflammatory diseases and cancer. Pharmacological Reviews, 61, 177–197.
  • Obayed, U. M., Valkov, E., Ve, T., Williams, S., Mas, C., Mansell, A., & Kobe, B. (2014). Recombinant production of functional full-length and truncated human TRAM/TICAM-2 adaptor protein involved in Toll-like receptor and interferon signalling. Protein Expression and Purification, 106, 31–40.
  • Ohnishi, H., Tochio, H., Kato, Z., Orii, K. E., Li, A., Kimura, T., … Shirakawa, M. (2009). Structural basis for the multiple interactions of the MyD88 TIR domain in TLR4 signaling. Proceedings of the National Academy of Sciences, 106, 10260–10265.10.1073/pnas.0812956106
  • Oshiumi, H., Sasai, M., Shida, K., Fujita, T., Matsumoto, M., & Seya, T. (2003). TIR-containing adapter molecule (TICAM)-2, a bridging adapter recruiting to Toll-like receptor 4 TICAM-1 that induces interferon-β. Journal of Biological Chemistry, 278, 49751–49762. doi:10.1074/jbc.M305820200
  • Palsson-McDermott, E. M., & O’Neill L. A. (2004). Signal transduction by the lipopolysaccharide receptor, Toll-like receptor-4. Immunology, 113, 153–162.10.1111/imm.2004.113.issue-2
  • Park, B. S., Song, D. H., Kim, H. M., Choi, B. S., Lee, H., & Lee, J. O. (2009). The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex. Nature, 458, 1191–1195. doi:10.1038/nature07830
  • Parrinello, M., & Rahman, A. (1981). Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics, 52, 7182–7190.10.1063/1.328693
  • Peri, F., & Piazza, M. (2012). Therapeutic targeting of innate immunity with Toll-like receptor-4 (TLR4) antagonists. Biotechnology Advances, 30, 251–260.10.1016/j.biotechadv.2011.05.014
  • Pettit, F. K., Bare, E., Tsai, A., & Bowie, J. U. (2007). HotPatch: A statistical approach to finding biologically relevant features on protein surfaces. Journal of Molecular Biology, 369, 863–879.10.1016/j.jmb.2007.03.036
  • Piao, W., Vogel, S. N., & Toshchakov, V. Y. (2013). Inhibition of TLR4 signaling by TRAM-derived decoy peptides in vitro and in vivo. The Journal of Immunology, 190, 2263–2272. doi:10.4049/jimmunol.1202703
  • Piao, W., Ru, L. W., Piepenbrink, K. H., Sundberg, E. J., Vogel, S. N., & Toschchakov, Y. V. (2013). Recruitment of TLR adapter TRIF to TLR4 signaling complex is mediated by the second helical region of TRIF TIR domain. Proceedings of the National Academy of Science, 110, 19036–19041. doi:10.1073/pnas.1313575110
  • Poltorak, A., He, X., Smirnova, I., Liu, M. Y., Van Huffel, C., Du, X., … Beutler, B. (1998). Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice. Mutations in Tlr4 gene. Science, 282, 2085–2088.
  • Porollo, A., & Meller, J. (2007). Prediction-based fingerprints of protein-protein interactions. PROTEINS. Structure, Function and Bioinformatics, 66, 630–645.
  • Prime version 3.2. New York, NY: Schrödinger, LLC. 2013.
  • Roger, T., Froidevaux, C., Le Roy, D. L., Reymond, M. K., Chanson, A. L., Mauri, D., … Calandra, T. (2009). Protection from lethal gram-negative bacterial sepsis by targeting Toll-like receptor 4. Proceedings of the National Academy of Sciences, 106, 2348–2352.10.1073/pnas.0808146106
  • S̆ali, A., & Blundell, T. L. (1990). Definition of general topological equivalence in protein structures. Journal of Molecular Biology, 212, 403–428.10.1016/0022-2836(90)90134-8
  • Šali, A., & Blundell, T. L. (1993). Comparative protein modelling by satisfaction of spatial restraints. Journal of Molecular Biology, 234, 779–815.10.1006/jmbi.1993.1626
  • Schmidt, T., Bergner, A., & Schwede, T. (2014). Modelling three-dimensional protein structures for applications in drug design. Drug Discovery Today, 19, 890–897. doi:10.1016/j.drudis.2013.10.027
  • Schrödinger Release 2013-1: Canvas, version 1.6. New York, NY: Schrödinger, LLC. 2013.
  • Schrödinger Release 2013-1: LigPrep, version 2.6. New York, NY: Schrödinger, LLC. 2013.
  • Schrödinger Release 2013-1: Maestro, version 9.4. New York, NY: Schrödinger, LLC. 2013.
  • Schrödinger Release 2013-1: Schrödinger Suite 2013 Protein Preparation Wizard; Epik version 2.4. New York, NY: Schrödinger, LLC. 2013.
  • Schüttelkopf, A. V., & van Aalten, D. M. F. (2004). PRODRG: A tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallographica, D60, 1355–1361.
  • Small-Molecule Drug Discovery Suite 2013-1: Glide, version 5.9. New York, NY: Schrödinger, LLC. 2013.
  • Small-Molecule Drug Discovery Suite 2013-1: QikProp, version 3.6. New York, NY: Schrödinger, LLC. 2013.
  • Small-Molecule Drug Discovery Suite 2013-1: Schrödinger Suite 2013-1 Induced Fit Docking protocol; Glide version 5.9. New York, NY: Schrödinger, LLC. 2013.
  • Snyder, G. A., Cirl, C., Jiang, J., Chen, K., Waldhuber, A., Smith, P., … Xiao, T. S. (2013). Molecular mechanisms for the subversion of MyD88 signaling by TcpC from virulent uropathogenic Escherichia coli. Proceedings of the National Academy of Sciences, 110, 6985–6990. Retrieved from www.pnas.org/cgi/doi/10.1073/pnas.1215770110
  • Stack, J., & Bowie, A. G. (2012). Signaling by Targeting BB Loop Motifs in Toll-IL-1 Receptor Adaptor Proteins to Disrupt Receptor: Adaptor Interactions. The Journal of Biological Chemistry, 287, 22672–22682.
  • Sukhwal, A., & Sowdhamini, R. (2013). Oligomerisation status and evolutionary conservation of interfaces of protein structural domain superfamilies. Molecular BioSystems, 9, 1652–1661. doi:10.1039/c3mb25484d
  • Takashima, K., Matsunaga, N., Yoshimatsu, M., Hazeki, K., Kaisho, T., Uekata, M., … Ii, M. (2009). Analysis of binding site for the novel small-molecule TLR4 signal transduction inhibitor TAK-242 and its therapeutic effect on mouse sepsis model. British Journal of Pharmacology, 157, 1250–1262. doi:10.1111/j.1476-5381.2009.0029710.1111/bph.2009.157.issue-7
  • Takeda, K., & Akira, S. (2004). TLR signaling pathways. Seminars in Immunology, 16, 3–9. doi:10.1016/j.smim.2003.10.003
  • Tao, X., Xu, Y., Zheng, Y., Beg, A. A., & Tong, L. (2002). An extensively associated dimer in the structure of the C713S mutant of the TIR domain of human TLR2. Biochemical and Biophysical Research Communications, 299, 216–221.10.1016/S0006-291X(02)02581-0
  • Toshchakov, V. Y., Fenton, M. J., & Vogel, S. N. (2007). Cutting edge: Differential inhibition of TLR signaling pathways by cell-permeable peptides representing BB loops of TLRs. The Journal of Immunology, 178, 2655–2660.10.4049/jimmunol.178.5.2655
  • Toshchakov, V. Y., Szmacinski, H., Couture, L. A., Lakowicz, J. R., & Vogel, S. N. (2011). Targeting TLR4 signaling by TLR4 Toll/IL-1 receptor domain-derived decoy peptides: Identification of the TLR4 Toll/IL-1 receptor domain dimerization interface. The Journal of Immunology, 186, 4819–4827. doi:10.4049/jimmunol.1002424
  • Tsujimoto, H., Ono, S., Efron, P. A., Scumpia, P. A., Moldawer, L. L., & Mochizuki, H. (2008). Role of Toll-like receptors in the development of sepsis. Shock, 29, 315–321. doi:10.1097/SHK.0b013e318157ee55
  • Valkov, E., Stamp, A., DiMaio, F., Baker, D., Verstak, B., Roversi, P., … Kobe, B. (2011). Crystal structure of Toll-like receptor adaptor MAL/TIRAP reveals the molecular basis for signal transduction and disease protection. Proceedings of the National Academy of Sciences, 108, 14879–14884.10.1073/pnas.1104780108
  • de Vries, S. J., van Dijk, M., & Bonvin, A. M. J. J. (2010). HADDOCK. A web server for data-driven biomolecular docking. Nature Protocols, 5, 883–897.
  • Walters, W.P., Stahl, M., & Murcko, M. A. (1998). Virtual screening-an overview. Drug Discovery Today, 3, 160–178. doi:10.1016/S1359-6446(97)01163-X
  • Waszkowycz, B., Perkins, T. D. J., Sykes, R. A., & Li, J. (2001). Large-scale virtual screening for discovering leads in the postgenomic era. IBM Systems Journal, 40, 360–376.10.1147/sj.402.0360
  • Wiederstein, M., & Sippl, M. J. (2007). ProSA-web. interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research, 35, W407–W410.10.1093/nar/gkm290
  • Wittebole, X., Castanares-Zapatero, D., & Laterre, P. F. (2010). Toll-like receptor 4 modulation as a strategy to treat sepsis. Mediators of Inflammation, 2010, 1–9. doi:10.1155/2010/568396
  • Xu, Y., Tao, X., Shen, B., Horng, T., Medzhitov, R., Manley, J.L., & Tong, L. (2000). Structural basis for signal transduction by the Toll/interleukin-1 receptor domains. Nature, 408, 111–115.
  • Yamamoto, M., Sato, S., Hemmi, H., Uematsu, S., Hoshino, K., Kaisho, T., … Akira, S. (2003). TRAM is specifically involved in the Toll-like receptor 4-mediated MyD88-independent signaling pathway. Nature Immunology, 4, 1144–1150. doi:10.1038/ni98

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.