328
Views
9
CrossRef citations to date
0
Altmetric
Research Articles

Trinucleotide’s quadruplet symmetries and natural symmetry law of DNA creation ensuing Chargaff’s second parity rule

, , &
Pages 1383-1394 | Received 06 May 2015, Accepted 03 Aug 2015, Published online: 04 May 2016

References

  • Afreixo, V., Bastos, C. A. C., Garcia, S. P., Rodrigues, J. M. O. S., Pinho, A. J., & Ferreira, P. J. S. G. (2013). The breakdown of the word symmetry in the human genome. Journal of Theoretical Biology, 335, 153–159.10.1016/j.jtbi.2013.06.032
  • Afreixo, V., Rodrigues, J. M. O. S., & Bastos, C. A. C. (2015). Analysis of single-strand exceptional word symmetry in the human genome: New measures. Biostatistics, 16, 209–221.10.1093/biostatistics/kxu041
  • Albrecht-Buehler, G. (2006). Asymptotically increasing compliance of genomes with Chargaff’s second parity rules through inversions and inverted transpositions. Proceedings of the National Academy of Sciences, 103, 17828–17833.10.1073/pnas.0605553103
  • Albrecht-Buehler, G. (2007a). The three classes of triplet profiles of natural genomes. Genomics, 89, 596–601.10.1016/j.ygeno.2006.12.009
  • Albrecht-Buehler, G. (2007b). Inversions and inverted transpositions as the basis for an almost universal “format” of genome sequences. Genomics, 90, 297–305.10.1016/j.ygeno.2007.05.010
  • Baisnee, P. F., Hampson, S., & Baldi, P. (2002). Why are complementary DNA strands symmetric? Bioinformatics, 18, 1021–1033.10.1093/bioinformatics/18.8.1021
  • Bashford, J. D., Tsohantjis, I., & Jarvis, P. D. (1998). A supersymmetric model for the evolution of the genetic code. Proceedings of the National Academy of Sciences, 95, 987–992.10.1073/pnas.95.3.987
  • Bell, S. J., & Forsdyke, D. R. (1999). Deviations from Chargaff’s second parity rule correlate with direction of transcription. Journal of Theoretical Biology, 197, 63–76.10.1006/jtbi.1998.0858
  • Byers, N. (1999). E. Noether's discovery of the deep connection between symmetries and conservation laws. Israel Mathematical Conference Proceedings, 12, 67–82.
  • Chargaff, E. (1951). Structure and function of nucleic acids as cell constituents. Federation Proceedings, 10, 654–659.
  • Chen, L., & Zhao, H. (2005). Negative correlation between compositional symmetries and local recombination rates. Bioinformatics, 21, 3951–3958.10.1093/bioinformatics/bti651
  • Dill, K. A., Phillips, A. T., & Rosen, J. B. (1997). Protein structure and energy landscape dependence on sequence using a continuous energy function. Journal of Computational Biology, 4, 227–239.10.1089/cmb.1997.4.227
  • Dinner, A. R., Šali, A., Smith, L. J., Dobson, C. M., & Karplus, M. (2000). Understanding protein folding via free-energy surfaces from theory and experiment. TIBS, 25, 331–339.
  • Doye, P. K., & Wales, D. J. (1996). On potential energy surfaces and relaxation to the global minimum. The Journal of Chemical Physics, 105, 8428–8445.10.1063/1.472697
  • Fickett, J. W., Torney, D. C., & Wolf, D. R. (1992). Base compositional structure of genomes. Genomics, 13, 1056–1064.10.1016/0888-7543(92)90019-O
  • Forsdyke, D. R. (1995). Relative roles of primary sequence and (G+C)% in determining the hierarchy of frequencies of complementary trinucleotide pairs in DNAs of different species. Journal of Molecular Evolution, 41, 573–581.
  • Forsdyke, D. R., & Bell, S. J. (2004). Purine loading, stem-loops and Chargaff’s second parity rule. Applied Bioinformatics, 3, 3–8.10.2165/00822942-200403010-00002
  • Frenkel, Z. M., & Trifonov, E. N. (2012). Origin and evolution of genes and genomes. Crucial role of triplet expansions. Journal of Biomolecular Structure and Dynamics, 30, 201–210.10.1080/07391102.2012.677771
  • Frenkel, Z. M., Barzily, Z., Volkovich, Z., & Trifonov, E. N. (2013). Hidden ancient repeats in DNA: Mapping and quantification. Gene, 528, 282–287.10.1016/j.gene.2013.06.059
  • Glazebrook, J. F., & Wallace, R. (2012). “The frozen accident” as an evolutionary adaptation: A rate distortion theory perspective on the dynamics and symmetries of genetic coding mechanisms. Informatica, 36, 53–73.
  • Gross, D. J. (1996). The role of symmetry in fundamental physics. Proceedings of the National Academy of Sciences, 93, 14256–14259.10.1073/pnas.93.25.14256
  • Hart, A., & Martínez, S. (2011). Statistical testing of Chargaff’s second parity rule in bacterial genome sequences. Stochastic Models, 27, 272–317.10.1080/15326349.2011.567931
  • Hart, A., Martínez, S., & Olmos, F. (2012). A Gibbs approach to Chargaff’s second parity rule. Journal of Statistical Physics, 146, 408–422.10.1007/s10955-011-0377-6
  • Innocentini, G. C. P., Forger, F. M., Ramos, A. F., & Hornos, J. E. (2010). Symmetry in biology: From genetic code to stochastic gene regulation. IET Systems Biology, 4, 311–329.10.1049/iet-syb.2010.0058
  • Kelso, J. (2014). private communication.
  • Kong, S. G., Fan, W. L., Chen, H. D., Hsu, Z. T., Zhou, N., Zheng, B., & Lee, H. C. (2009). Inverse symmetry in complete genomes and whole-genome inverse duplication. PLoS ONE, 4, e7553.10.1371/journal.pone.0007553
  • Koonin, E. V. (2011). Are there laws of genome evolution? PLoS Computational Biology, 7, e1002173.10.1371/journal.pcbi.1002173
  • Lobry, J. R., & Lobry, C. (1999). Evolution of DNA base composition under no-strand-bias conditions when the substitution rates are not constant. Molecular Biology and Evolution, 16, 719–723.10.1093/oxfordjournals.molbev.a026156
  • Lobry, J. R., & Sueoka, N. (2002). Asymmetric directional mutation pressures in bacteria. Genome Biology, 3, 0058.1.
  • Mascher, M., Schubert, I., Scholz, U., & Friedel, S. (2013). Patterns of nucleotide asymmetries in plant and animal genomes. Biosystems, 111, 181–189.10.1016/j.biosystems.2013.02.001
  • Mitchell, D., & Bridge, R. (2006). A test of Chargaff’s second rule. Biochemical and Biophysical Research Communications, 340, 90–94.10.1016/j.bbrc.2005.11.160
  • Nikolajewa, S., Friedel, M., Beyer, A., & Wilhelm, T. (2006). The new classification scheme of the genetic code, its early evolution, and tRNA usage. Journal of Bioinformatics and Computational Biology, 4, 609–620.10.1142/S0219720006001825
  • Nikolaou, C., & Almirantis, Y. (2006). Deviations from Chargaff’s second parity rule in organellar DNA. Gene, 381, 34–41.10.1016/j.gene.2006.06.010
  • Okamura, K., Wei, J., & Scherer, S. W. (2007). Evolutionary implications of inversions that have caused intra-strand parity in DNA. BMC Genomics, 8, 160–166.10.1186/1471-2164-8-160
  • Perez, J. C. (2010). Codon populations in single-stranded whole human genome DNA Are fractal and fine-tuned by the Golden Ratio 1.618. Interdisciplinary Sciences – Computational Life Sciences, 2, 228–240.10.1007/s12539-010-0022-0
  • Powdel, B. R., Satapathy, S. S., Kumar, A., Jha, P. K., Buragohain, A. K., Borah, M., & Ray, S. K. (2009). A study in entire chromosomes of violations of the intra-strand parity of complementary nucleotides (Chargaff’s second parity rule). DNA Research, 16, 325–343.10.1093/dnares/dsp021
  • Prabhu, V. V. (1993). Symmetry observations in long nucleotide sequences. Nucleic Acids Research, 21, 2797–2800.10.1093/nar/21.12.2797
  • Pruefer, K., Racimo, F., Patterson, N., Sankararaman, S., Sawyer, S., Heinze, A., & Paabo, S. (2014). The complete genome sequence of a Neanderthal from the Altai mountains. Nature, 505, 43–50.
  • Qi, D., & Cuticchia, A. J. (2001). Compositional symmetries in complete genomes. Bioinformatics, 17, 557–559.10.1093/bioinformatics/17.6.557
  • Rapoport, A. E., & Trifonov, E. N. (2013). Compensatory nature of Chargaff’s second parity rule. Journal of Biomolecular Structure and Dynamics, 31, 1324–1336.10.1080/07391102.2012.736757
  • Rosandić, M., & Paar, V. (2014). Codon sextets with leading role of serine create “ideal” symmetry classification scheme of the genetic code. Gene, 543, 45–52.10.1016/j.gene.2014.04.009
  • Rosandić, M., Glunčić, M., & Paar, V. (2013). Start/stop codon like trinucleotides extensions in primate alpha satellites. Journal of Theoretical Biology, 317, 301–309.10.1016/j.jtbi.2012.09.022
  • Rosandić, M., Paar, V., & Glunčić, M. (2013). Fundamental role of start/stop regulators in whole DNA and new trinucleotide classification. Gene, 531, 184–190.10.1016/j.gene.2013.09.021
  • Rudner, R., Karkas, J. D., & Chargaff, E. (1968). Separation of B. subtilis DNA into complementary strands. 3. Direct analysis. Proceedings of the National Academy of Sciences, 60, 921–922.10.1073/pnas.60.3.921
  • Sobottka, M., & Hart, A. G. (2011). A model capturing novel strand symmetries in bacterial DNA. Biochemical and Biophysical Research Communications, 410, 823–828.10.1016/j.bbrc.2011.06.072
  • Sueoka, N. (1995). Intrastrand parity rules of DNA base composition and usage biases of synonymous codons. Journal of Molecular Evolution, 40, 318–325.10.1007/BF00163236
  • Wang, S., Tu, J., Jia, Z., & Lu, Z. (2014). High order intra-strand partial symmetry increases with organismal complexity in animal evolution. Scientific Reports, 4, 6400.10.1038/srep06400
  • Watson, J. D., & Crick, F. H. (1953). Molecular structure of nucleic acids: A structure for deoxyribose nucleic acid. Nature, 171, 737–738.10.1038/171737a0
  • Wigner, E. P. (1969a). Problems of symmetry in old and new physics. Bulletin of American Mathematical Society, 75, 891–906.
  • Wigner, E. P. (1969b). Physics and the explanation of life. In R. J. Seeger & R. S. Cohen (Eds.), Proceedings of the AAAS 1969 Program, Philosophical Foundations of Science, Boston Studies in the Philosophy of Science XI (pp. 119–132).
  • Yamagishi, M. E. B., & Herai, R. H. (2011). Chargaff’s “grammar of biology”: New fractal-like rules. arXiv:1112.1528[q-bio.GN].
  • Zhang, S. H., & Huang, Y. Z. (2008). Characteristics of oligonucleotide frequencies across genomes: Conservation versus variation, strand symmetry, and evolutionary implications. Nature Proceedings. hdl.10101/npre.2008.2146.1.
  • Zhang, S. H., & Huang, Y. Z. (2010). Limited contribution of stem-loop potential to symmetry of single-stranded genomic DNA. Bioinformatics, 26, 478–485.10.1093/bioinformatics/btp703
  • Zhang, S. H., & Wang, L. (2011). A novel common triplet profile for GC-rich prokaryotic genomes. Genomics, 97, 330–331.10.1016/j.ygeno.2011.02.005
  • Zhang, S. H., & Wang, L. (2012). Two common profiles exist for genomic oligonucleotide frequencies. BMC Research Notes, 5, 639–648.10.1186/1756-0500-5-639
  • Zhang, H., Li, P., Zhong, H. S., & Zhang, S. H. (2013). Conservation vs. variation of dinucleotide frequencies across bacterial and archaeal genomes: Evolutionary implications. Frontiers in Microbiology, 4, 269–276.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.