338
Views
17
CrossRef citations to date
0
Altmetric
Research Articles

Allosteric site-mediated active site inhibition of PBP2a using Quercetin 3-O-rutinoside and its combination

, , &
Pages 1778-1796 | Received 22 Jun 2015, Accepted 06 Sep 2015, Published online: 04 May 2016

References

  • Beevi, S. S., Boddepalli, V., & Mangamoori, L. N. (2014). Allyl isothiocyanate from crucifers potentiates β-lactam activity against methicillin-resistant Staphylococcus aureus. Journal of Medical and Scientific Research, 2, 189–193. Retrieved from kfrc.co.in/Journal/archive/october2014/189-193.pdf
  • Bernal, P., Zloh, M., & Taylor, P. W. (2009). Disruption of d-alanyl esterification of Staphylococcus aureus cell wall teichoic acid by the β-lactam resistance modifier epicatechin gallate. Journal of Antimicrobial Chemotherapy, 63, 1156–1162. doi:10.1093/jac/dkp094
  • Dancer, S. J. (2001). The problem with cephalosporins. Journal of Antimicrobial Chemotherapy, 48, 463–478. doi:10.1093/jac/48.4.463
  • Deresinski, S. C. (2008). Ceftobiprole: Breaking therapeutic dogmas of the β-lactam class. Diagnostic Microbiology and Infectious Disease, 61, 82–85. doi:10.1016/j.diagmicrobio.2008.02.011
  • Forstner, C., Dungl, C., Tobudic, S., Mitteregger, D., Lagler, H., & Burgmann, H. (2013). Predictors of clinical and microbiological treatment failure in patients with methicillin-resistant Staphylococcus aureus (MRSA) bacteraemia: A retrospective cohort study in a region with low MRSA prevalence. Clinical Microbiology and Infection, 19, E291–E297. doi:10.1111/1469-0691.12169
  • Friesner, R. A., Murphy, R. B., Repasky, M. P., Frye, L. L., Greenwood, J. R., Halgren, T. A., … Mainz, D. T. (2006). Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. Journal of Medicinal Chemistry, 49, 6177–6196. doi:10.1021/jm051256o
  • Hafidh, Rand R., Abdulamir, A. S., Vern, L. S., Bakar, F. A., Abas, F., Jahanshiri, F., & Sekawi, Z. (2011). Inhibition of growth of highly resistant bacterial and fungal pathogens by a natural product. The Open Microbiology Journal, 5, 96–106. doi:10.2174/1874285801105010096
  • Hirai, I., Okuno, M., Katsuma, R., Arita, N., Tachibana, M., & Yamamoto, Y. (2010). Characterisation of anti-Staphylococcus aureus activity of quercetin. International Journal of Food Science & Technology, 45, 1250–1254. doi:10.1111/j.1365-2621.2010.02267.x
  • Kawai, M., Yamada, S., Ishidoshiro, A., Oyamada, Y., Ito, H., & Yamagishi, J.-i. (2009). Cell-wall thickness: Possible mechanism of acriflavine resistance in meticillin-resistant Staphylococcus aureus. Journal of Medical Microbiology, 58, 331–336. doi:10.1099/jmm.0.004184-0
  • Kumar, K. M., Anbarasu, A., & Ramaiah, S. (2014). Molecular docking and molecular dynamics studies on β-lactamases and penicillin binding proteins. Molecular BioSystems, 10, 891–900. doi:10.1039/c3mb70537d
  • Kumar, K. M., Lavanya, P., Anbarasu, A., & Ramaiah, S. (2014). Molecular dynamics and molecular docking studies on E166A point mutant, R274N/R276N double mutant, and E166A/R274N/R276N triple mutant forms of class A β-lactamases. Journal of Biomolecular Structure and Dynamics, 32, 1953–1968. doi:10.1080/07391102.2013.847804
  • Lim, L., Sutton, E., & Brown, J. (2011). Ceftaroline: A new broad-spectrum cephalosporin. American Journal of Health-System Pharmacy, 68, 491–498. doi:10.2146/ajhp100181
  • Lovering, A. L., de Castro, L. H., Lim, D., & Strynadka, N. C. (2007). Structural insight into the transglycosylation step of bacterial cell-wall biosynthesis. Science, 315, 1402–1405. doi:10.1126/science.1136611
  • McDonough, M. A., Anderson, J. W., Silvaggi, N. R., Pratt, R. F., Knox, J. R., & Kelly, J. A. (2002). Structures of two kinetic intermediates reveal species specificity of penicillin-binding proteins. Journal of Molecular Biology, 322, 111–122. doi:10.1016/S0022-2836(02)00742-8
  • Mirzaie, S., Najafi, K., Hakhamaneshi, M. S., Shahverdi, A. R., & Fathi, F. (2015). Investigation for antimicrobial resistance-modulating activity of diethyl malate and 1-methyl malate against beta-lactamase class A from Bacillus licheniformis by molecular dynamics, in vitro and in vivo studies. Journal of Biomolecular Structure and Dynamics, 33, 1016–1026. doi:10.1080/07391102.2014.924877
  • Moghadam, M. S., Maleki, S., Darabpour, E., Motamedi, H., & Nejad, S. M. S. (2010). Antibacterial activity of eight Iranian plant extracts against methicillin and cefixime restistant Staphylococcous aureus strains. Asian Pacific Journal of Tropical Medicine, 3, 262–265. doi:10.1016/S1995-7645(10)60063-6
  • Müller, P., Alber, D. G., Turnbull, L., Schlothauer, R. C., Carter, D. A., Whitchurch, C. B., & Harry, E. J. (2013). Synergism between Medihoney and Rifampicin against Methicillin-Resistant Staphylococcus aureus (MRSA). PLoS One, 8, e57679. doi:10.1371/journal.pone.0057679
  • Nagpal, I., Raj, I., Subbarao, N., & Gourinath, S. (2012). Virtual screening, identification and in vitro testing of novel inhibitors of O-acetyl-L-serine sulfhydrylase of Entamoeba histolytica. PLoS One, 7, e30305. doi:10.1371/journal.pone.0030305
  • Novy, P., Rondevaldova, J., Kourimska, L., & Kokoska, L. (2013). Synergistic interactions of epigallocatechin gallate and oxytetracycline against various drug resistant Staphylococcus aureus strains in vitro. Phytomedicine, 20, 432–435. doi:10.1016/j.phymed.2012.12.010
  • Oliveira, D. C., & de Lencastre, H. (2011). Methicillin-resistance in Staphylococcus aureus is not affected by the overexpression in trans of the mecA gene repressor: A surprising observation. PLoS One, 6, e23287. doi:10.1371/journal.pone.0023287
  • Oliveira, S. M. S. de, Falcão-Silva, V. S., Siqueira-Junior, J. P., de Carvalho Costa, M. J., & Diniz, M. de F. F. de (2011). Modulation of drug resistance in Staphylococcus aureus by extract of mango (Mangifera indica L., Anacardiaceae) peel. Revista Brasileira de Farmacognosia, 21, 190–193. doi:10.1590/S0102-695X2011005000014
  • Otero, L. H., Rojas-Altuve, A., Llarrull, L. I., Carrasco-Lopez, C., Kumarasiri, M., Lastochkin, E., … Hermoso, J. A. (2013). How allosteric control of Staphylococcus aureus penicillin binding protein 2a enables methicillin resistance and physiological function. Proceedings of the National Academy of Sciences, 110, 16808–16813. doi:10.1073/pnas.1300118110
  • Qin, R., Xiao, K., Li, B., J., W., Peng, W., Zheng, J., & Zhou, H. (2013). The combination of catechin and epicatechin gallate from Fructus crataegi potentiates β-lactam antibiotics against methicillin-resistant Staphylococcus aureus (MRSA) in vitro and in vivo. International Journal of Molecular Sciences, 14, 1802–1821. doi:10.3390/ijms14011802
  • Rani, N., Vijayakumar, S., Velan, L. P. T., & Arunachalam, A. (2014). Quercetin 3-O-rutinoside mediated inhibition of PBP2a: Computational and experimental evidence to its anti-MRSA activity. Molecular BioSystems, 10, 3229–3237. doi:10.1039/c4mb00319e
  • Rao, S. N., Head, M. S., Kulkarni, A., & LaLonde, J. M. (2007). Validation studies of the site-directed docking program LibDock. Journal of Chemical Information and Modeling, 47, 2159–2171. doi:10.1021/ci6004299
  • Sabuncu, E., David, J., Bernède-Bauduin, C., Pepin, S., Leroy, M., Boelle, P. Y., … Guillemot, D. (2009). Significant reduction of antibiotic use in the community after a nationwide campaign in France, 2002–2007. PLoS Medicine, 6, e1000084. doi:10.1371/journal.pmed.1000084
  • Sakoulas, G., & Moellering, R. C. (2008). Increasing antibiotic resistance among methicillin‐resistant Staphylococcus aureus strains. Clinical Infectious Diseases, 46, S360–S367. doi:10.1086/533592
  • Shehab, N., Patel, P. R., Srinivasan, A., & Budnitz, D. S. (2008). Emergency department visits for antibiotic‐associated adverse events. Clinical Infectious Diseases, 47, 735–743. doi:10.1086/591126
  • Tiwari, V., & Moganty, R. R. (2014). Conformational stability of OXA-51 β-lactamase explains its role in carbapenem resistance of Acinetobacter baumannii. Journal of Biomolecular Structure and Dynamics, 32, 1406–1420. doi:10.1080/07391102.2013.819789
  • Toroglu, S. 2011. In-vitro antimicrobial activity and synergistic/antagonistic effect of interactions between antibiotics and some spice essential oils. Journal of Environmental Biology, 32, 23–29. Retrieved from http://imsear.hellis.org/handle/123456789/146537
  • Ubukata, K., Nonoguchi, R., Matsuhashi, M., & Konno, M. (1989). Expression and inducibility in Staphylococcus aureus of the mecA gene, which encodes a methicillin-resistant S. aureus-specific penicillin-binding protein. Journal of Bacteriology, 171, 2882–2885. doi:0021-9193/89/052882-04$02.00/0.
  • Vinod, N. V., Shijina, R., Dileep, K. V., & Sadasivan, C. (2010). Inhibition of beta-lactamase by 1,4-naphthalenedione from the plant Holoptelea integrifolia. Applied Biochemistry and Biotechnology, 160, 1752–1759. doi:10.1007/s12010-009-8656-2
  • Wallace, A. C., Laskowski, R. A., & Thornton, J. M. (1995). LIGPLOT: A program to generate schematic diagrams of protein-ligand interactions. Protein Engineering, 8, 127–134. doi:10.1093/protein/8.2.127
  • Wiegand, I., Hilpert, K., & Hancock, R. E. (2008). Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nature Protocols, 3, 163–175. doi:10.1038/nprot.2007.521

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.