181
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

A tale of two paralogs: human Transformer2 proteins with differential RNA-binding affinities

, &
Pages 1979-1986 | Received 15 Jul 2015, Accepted 15 Sep 2015, Published online: 26 Nov 2015

References

  • Ahmad, H., Wragg, A., Cullen, W., Wombwell, C., Meijer, A. J. H. M., & Thomas, J. A. (2014). From intercalation to groove binding: Switching the DNA-binding mode of isostructural transition-metal complexes. Chemistry – A European Journal, 20, 3089–3096. doi:10.1002/chem.201304053
  • Ashkenazy, H., Erez, E., Martz, E., Pupko, T., & Ben-Tal, N. (2010). ConSurf 2010: Calculating evolutionary conservation in sequence and structure of proteins and nucleic acids. Nucleic Acids Research, 38, W529–W533. doi:10.1093/nar/gkq399
  • Berendsen, H. J. C., van der Spoel, D., & van Drunen, R. (1995). GROMACS: A message-passing parallel molecular dynamics implementation. Computer Physics Communications, 91, 43–56. doi:10.1016/0010-4655(95)00042-E
  • Best, A., James, K., Dalgliesh, C., Hong, E., Kheirolahi-Kouhestani, M., Curk, T., … Elliott, D. J. (2014). Human Tra2 proteins jointly control a CHEK1 splicing switch among alternative and constitutive target exons. Nature Communications, 5, 1–15. doi:10.1038/ncomms5760
  • Consortium, T. U. (2013). Update on activities at the universal protein resource (UniProt) in 2013. Nucleic Acids Research, 41, D43–D47. doi:10.1093/nar/gks1068
  • Dauwalder, B., Amaya-Manzanares, F., & Mattox, W. (1996). A human homologue of the drosophila sex determination factor transformer-2 has conserved splicing regulatory functions. Proceedings of the National Academy of Sciences, 93, 9004–9009. Retrieved from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=38585&tool=pmcentrez&rendertype=abstract10.1073/pnas.93.17.9004
  • Dominguez, C., Boelens, R., & Bonvin, A. M. J. J. (2003). HADDOCK: A protein–protein docking approach based on biochemical or biophysical information. Journal of the American Chemical Society, 125, 1731–1737.10.1021/ja026939x
  • Forsberg, Z., Mackenzie, A. K., Sørlie, M., Røhr, Å. K., Helland, R., Arvai, A. S., … Eijsink, V. G. H. (2014). Structural and functional characterization of a conserved pair of bacterial cellulose-oxidizing lytic polysaccharide monooxygenases. Proceedings of the National Academy of Sciences of the United States of America, 111, 8446–8451. doi:10.1073/pnas.1402771111
  • Grellscheid, S., Dalgliesh, C., Storbeck, M., Best, A., Liu, Y., Jakubik, M., … Elliott, D. J. (2011). Identification of evolutionarily conserved exons as regulated targets for the splicing activator Tra2β in development. PLoS Genetics, 7, e1002390. doi:10.1371/journal.pgen.1002390
  • Hornbeck, P. V., Kornhauser, J. M., Tkachev, S., Zhang, B., Skrzypek, E., Murray, B., … Sullivan, M. (2012). PhosphoSitePlus: A comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse. Nucleic Acids Research, 40, D261–D270. doi:10.1093/nar/gkr1122
  • Inoue, K., Hoshijima, K., Higuchi, I., Sakamoto, H., & Shimura, Y. (1992). Binding of the drosophila transformer and transformer-2 proteins to the regulatory elements of doublesex primary transcript for sex-specific RNA processing, 89, 8092–8096.
  • Johnson, J. M., Castle, J., Garrett-Engele, P., Kan, Z., Loerch, P. M., Armour, C. D., … Shoemaker, D. D. (2003). Genome-wide survey of human alternative pre-mRNA splicing with exon junction microarrays. Science, 302, 2141–2144. doi:10.1126/science.1090100
  • Kafri, R., Bar-Even, A., & Pilpel, Y. (2005). Transcription control reprogramming in genetic backup circuits. Nature Genetics, 37, 295–299. doi:10.1038/ng1523
  • Kafri, R., Levy, M., & Pilpel, Y. (2006). The regulatory utilization of genetic redundancy through responsive backup circuits. Proceedings of the National Academy of Sciences, 103, 11653–11658. doi:10.1073/pnas.0604883103
  • Kondo, S., Yamamoto, N., Murakami, T., Okumura, M., Mayeda, A., & Imaizumi, K. (2004). Tra2β, SF2/ASF and SRp30c modulate the function of an exonic splicing enhancer in exon 10 of tau pre-mRNA. Genes to Cells, 9, 121–130. doi:10.1111/j.1356-9597.2004.00709.x
  • Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C., Baldwin, J., … Chen, Y. J. (2001). Initial sequencing and analysis of the human genome. Nature, 409, 860–921. doi:10.1038/35057062
  • Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK: A program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26, 283–291.10.1107/S0021889892009944
  • Lu, X., & Olson, W. K. (2003). 3DNA: A software package for the analysis, rebuilding and visualization of three-dimensional nucleic acid structures. Nucleic Acids Research, 31, 5108–5121.10.1093/nar/gkg680
  • McGuffin, L. J., Bryson, K., & Jones, D. T. (2000). The PSIPRED protein structure prediction server. Bioinformatics, 16, 404–405. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10869041
  • Menke, M., Berger, B., & Cowen, L. (2008). Matt: Local flexibility aids protein multiple structure alignment. PLoS Computational Biology, 4, e10. doi:10.1371/journal.pcbi.0040010
  • Mizuguchi, K., Deane, C. M., Blundell, T. L., Johnson, M. S., & Overington, J. P. (1998). JOY: Protein sequence–structure representation and analysis. Bioinformatics, 14, 617–623.10.1093/bioinformatics/14.7.617
  • Profiles, T. (1997). VERIFY3D: Assessment of protein models with three-dimensional profiles. Methods in Enzymology, 277, 396–404.
  • Punta, M., Coggill, P., Eberhardt, R., Mistry, J., Tate, J., Boursnell, C., … Finn, R. (2012). The Pfam protein families database. Nucleic Acids Research, 40, D290–D301. doi:10.1093/nar/gkp985
  • Ren, J., Wen, L., Gao, X., Jin, C., Xue, Y., & Yao, X. (2009). DOG 1.0: Illustrator of protein domain structures. Cell Research, 19, 271–273. doi:10.1038/cr.2009.6
  • Sali, A., & Blundell, T. L. (1993, December 5). Comparative protein modelling by satisfaction of spatial restraints. Journal of Molecular Biology, 234, 779–815. doi:10.1006/jmbi.1993.1626
  • Stamm, S. (2002). Signals and their transduction pathways regulating alternative splicing: A new dimension of the human genome. Human Molecular Genetics, 11, 2409–2416. doi:10.1093/hmg/11.20.2409
  • Stoilov, P., Daoud, R., Nayler, O., & Stamm, S. (2004). Human tra2-beta1 autoregulates its protein concentration by influencing alternative splicing of its pre-mRNA. Human Molecular Genetics, 13, 509–524. doi:10.1093/hmg/ddh051
  • Tacke, R., Tohyama, M., Ogawa, S., & Manley, J. L. (1998). Human Tra2 proteins are sequence-specific activators of pre-mRNA Splicing. Cell, 93, 139–148. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/954639910.1016/S0092-8674(00)81153-8
  • Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30, 2725–2729. doi:10.1093/molbev/mst197
  • Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22, 4673–4680. Retrieved from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=308517&tool=pmcentrez&rendertype=abstract10.1093/nar/22.22.4673
  • Tran, Q., Coleman, T. P., & Roesser, J. R. (2003). Human transformer 2β and SRp55 interact with a calcitonin-specific splice enhancer. Biochimica et Biophysica Acta (BBA) – Gene Structure and Expression, 1625, 141–152. doi:10.1016/S0167-4781(02)00600-0
  • Tsuda, K., Someya, T., Kuwasako, K., Takahashi, M., He, F., Unzai, S., … Muto, Y. (2011). Structural basis for the dual RNA-recognition modes of human Tra2-β RRM. Nucleic Acids Research, 39, 1538–1553. doi:10.1093/nar/gkq854
  • Unni, S., Huang, Y., Hanson, R. M., Tobias, M., Krishnan, S., Li, W. W., … Baker, N. A. (2011). Web servers and services for electrostatics calculations with APBS and PDB2PQR. Journal of Computational Chemistry, 32, 1488–1491. doi:10.1002/jcc.21720
  • Von Mering, C., Jensen, L. J., Snel, B., Hooper, S. D., Krupp, M., Foglierini, M., … Bork, P. (2005). STRING: Known and predicted protein–protein associations, integrated and transferred across organisms. Nucleic Acids Research, 33, D433–D437. doi:10.1093/nar/gki005
  • Wang, J., Cieplak, P., & Kollman, P. A. (2000). How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? Journal of Computational Chemistry, 21, 1049–1074. doi:10.1002/1096-987X(200009)21:12<1049:AID-JCC3>3.0.CO;2-F
  • Wiederstein, M., & Sippl, M. J. (2007). ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research, 35, W407–W410. doi:10.1093/nar/gkm290
  • Zhao, Y., Huang, Y., Gong, Z., Wang, Y., Man, J., & Xiao, Y. (2012). Automated and fast building of three-dimensional RNA structures. Scientific Reports, 2, 734. doi:10.1038/srep00734
  • Zuker, M. (2003). Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Research, 31, 3406–3415. doi:10.1093/nar/gkg595

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.