242
Views
8
CrossRef citations to date
0
Altmetric
Research Articles

Deciphering the cause of evolutionary variance within intrinsically disordered regions in human proteins

, &
Pages 233-249 | Received 03 Dec 2015, Accepted 15 Jan 2016, Published online: 04 May 2016

References

  • Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., & Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Research, 25, 3389–3402.
  • Babu, M. M., van der Lee, R., de Groot, N. S., & Gsponer, J. (2011). Intrinsically disordered proteins: Regulation and disease. Current Opinion in Structural Biology, 21, 432–440. doi:10.1016/j.sbi.2011.03.011
  • Banerjee, S., & De, R. K. (2015). Structural disorder: A tool for housekeeping proteins performing tissue-specific interactions. Journal of Biomolecular Structure & Dynamics, 1–68. doi:10.1080/07391102.2015.1095115
  • Barrell, D., Dimmer, E., Huntley, R. P., Binns, D., O’Donovan, C., & Apweiler, R. (2009). The GOA database in 2009 – An integrated Gene Ontology Annotation resource. Nucleic Acids Research, 37, D396–403. doi:10.1093/nar/gkn803
  • Batada, N. N., Hurst, L. D., & Tyers, M. (2006). Evolutionary and physiological importance of hub proteins. PLOS Computational Biology, 2, e88. doi:10.1371/journal.pcbi.0020088
  • Bateman, A., Birney, E., Cerruti, L., Durbin, R., Etwiller, L., Eddy, S. R., … Sonnhammer, E. L. (2002). The Pfam protein families database. Nucleic Acids Research, 30, 276–280.
  • Bellay, J., Han, S., Michaut, M., Kim, T., Costanzo, M., Andrews, B. J., … Kim, P. M. (2011). Bringing order to protein disorder through comparative genomics and genetic interactions. Genome Biology, 12, R14. doi:10.1186/gb-2011-12-2-r14
  • Boehr, D. D., Nussinov, R., & Wright, P. E. (2009). The role of dynamic conformational ensembles in biomolecular recognition. Nature Chemical Biology, 5, 789–796. doi:10.1038/nchembio.232
  • Brown, C. J., Johnson, A. K., & Daughdrill, G. W. (2010). Comparing models of evolution for ordered and disordered proteins. Molecular Biology and Evolution, 27, 609–621. doi:10.1093/molbev/msp277
  • Brown, C. J., Johnson, A. K., Dunker, A. K., & Daughdrill, G. W. (2011). Evolution and disorder. Current Opinion in Structural Biology, 21, 441–446. doi:10.1016/j.sbi.2011.02.005
  • Brown, C. J., Takayama, S., Campen, A. M., Vise, P., Marshall, T. W., Oldfield, C. J., … Dunker, A. K. (2002). Evolutionary rate heterogeneity in proteins with long disordered regions. Journal of Molecular Evolution, 55, 104–110. doi:10.1007/s00239-001-2309-6
  • Brown, K. R., & Jurisica, I. (2007). Unequal evolutionary conservation of human protein interactions in interologous networks. Genome Biology, 8, R95. doi:10.1186/gb-2007-8-5-r95
  • Chakraborty, S., & Ghosh, T. C. (2013). Evolutionary rate heterogeneity of core and attachment proteins in yeast protein complexes. Genome Biology and Evolution, 5, 1366–1375. doi:10.1093/gbe/evt096
  • Chatr-Aryamontri, A., Breitkreutz, B. J., Oughtred, R., Boucher, L., Heinicke, S., Chen, D., … Tyers, M. (2015). The BioGRID interaction database: 2015 update. Nucleic Acids Research, 43, D470–8. doi:10.1093/nar/gku1204
  • Chen, F. C., Chen, C. J., Li, W. H., & Chuang, T. J. (2007). Human-specific insertions and deletions inferred from mammalian genome sequences. Genome Research, 17, 16–22. doi:10.1101/gr.5429606
  • Chen, J. W., Romero, P., Uversky, V. N., & Dunker, A. K. (2006a). Conservation of intrinsic disorder in protein domains and families: II. functions of conserved disorder. Journal of Proteome Research, 5, 888–898. doi:10.1021/pr060049p
  • Chen, J. W., Romero, P., Uversky, V. N., & Dunker, A. K. (2006b). Conservation of intrinsic disorder in protein domains and families: I. A database of conserved predicted disordered regions. Journal of Proteome Research, 5, 879–887. doi:10.1021/pr060048x
  • Chen, W. H., Minguez, P., Lercher, M. J., & Bork, P. (2012). OGEE: An online gene essentiality database. Nucleic Acids Research, 40, D901–6. doi:10.1093/nar/gkr986
  • Cortese, M. S., Uversky, V. N., & Dunker, A. K. (2008). Intrinsic disorder in scaffold proteins: Getting more from less. Progress in Biophysics & Molecular Biology, 98, 85–106. doi:10.1016/j.pbiomolbio.2008.05.007
  • Daughdrill, G. W., Narayanaswami, P., Gilmore, S. H., Belczyk, A., & Brown, C. J. (2007). Dynamic behavior of an intrinsically unstructured linker domain is conserved in the face of negligible amino acid sequence conservation. Journal of Molecular Evolution, 65, 277–288. doi:10.1007/s00239-007-9011-2
  • Dickerson, J. E., Zhu, A., Robertson, D. L., & Hentges, K. E. (2011). Defining the role of essential genes in human disease. PLOS One, 6, e27368. doi:10.1371/journal.pone.0027368
  • Dosztányi, Z., Chen, J., Dunker, A. K., Simon, I., & Tompa, P. (2006). Disorder and sequence repeats in hub proteins and their implications for network evolution. Journal of Proteome Research, 5, 2985–2995. doi:10.1021/pr060171o
  • Dosztányi, Z., Csizmok, V., Tompa, P., & Simon, I. (2005). IUPred: Web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics, 21, 3433–3434. doi:10.1093/bioinformatics/bti541
  • Drummond, D. A., Bloom, J. D., Adami, C., Wilke, C. O., & Arnold, F. H. (2005). Why highly expressed proteins evolve slowly. Proceedings of the National Academy of Sciences of the United States of America, 102, 14338–14343. doi:10.1073/pnas.0504070102
  • Drummond, D. A., Raval, A., & Wilke, C. O. (2006). A single determinant dominates the rate of yeast protein evolution. Molecular Biology and Evolution, 23, 327–337. doi:10.1093/molbev/msj038
  • Dunker, A. K., Cortese, M. S., Romero, P., Iakoucheva, L. M., & Uversky, V. N. (2005). Flexible nets. The roles of intrinsic disorder in protein interaction networks. FEBS Journal, 272, 5129–5148. doi:10.1111/j.1742-4658.2005.04948.x
  • Dunker, A. K., Lawson, J. D., Brown, C. J., Williams, R. M., Romero, P., Oh, J. S., … Obradovic, Z. (2001). Intrinsically disordered protein. Journal of Molecular Graphics and Modelling, 19, 26–59.
  • Dunker, A. K., Obradovic, Z., Romero, P., Garner, E. C., & Brown, C. J. (2000). Intrinsic protein disorder in complete genomes. Genome Informatics. Workshop on Genome Informatics, 11, 161–171.
  • Dunker, A. K., Oldfield, C. J., Meng, J., Romero, P., Yang, J. Y., Chen, J. W., … Uversky, V. N. (2008). The unfoldomics decade: An update on intrinsically disordered proteins. BMC Genomics, 9(Suppl 2), S1. doi:10.1186/1471-2164-9-S2-S1
  • Dyson, H. J., & Wright, P. E. (2002). Coupling of folding and binding for unstructured proteins. Current Opinion in Structural Biology, 12, 54–60.
  • Dyson, H. J., & Wright, P. E. (2005). Intrinsically unstructured proteins and their functions. Nature Reviews Molecular Cell Biology, 6, 197–208. doi:10.1038/nrm1589
  • Fazekas, D., Koltai, M., Türei, D., Módos, D., Pálfy, M., Dúl, Z., … Korcsmáros, T. (2013). SignaLink 2 – A signaling pathway resource with multi-layered regulatory networks. BMC Systems Biology, 7, 7. doi:10.1186/1752-0509-7-7
  • Fraser, H. B., Hirsh, A. E., Steinmetz, L. M., Scharfe, C., & Feldman, M. W. (2002). Evolutionary rate in the protein interaction network. Science, 296, 750–752. doi:10.1126/science.1068696
  • Fraser, H. B., Wall, D. P., & Hirsh, A. E. (2003). A simple dependence between protein evolution rate and the number of protein–protein interactions. BMC Evolutionary Biology, 3, 11. doi:10.1186/1471-2148-3-11
  • Fuxreiter, M., & Tompa, P. (2012). Fuzzy complexes: A more stochastic view of protein function. Advances in Experimental Medicine and Biology, 725, 1–14. doi:10.1007/978-1-4614-0659-4_1
  • Gsponer, J., & Babu, M. M. (2009). The rules of disorder or why disorder rules. Progress in Biophysics & Molecular Biology, 99, 94–103. doi:10.1016/j.pbiomolbio.2009.03.001
  • Gsponer, J., Futschik, M. E., Teichmann, S. A., & Babu, M. M. (2008). Tight regulation of unstructured proteins: From transcript synthesis to protein degradation. Science, 322, 1365–1368. doi:10.1126/science.1163581
  • Gunasekaran, K., Tsai, C. J., Kumar, S., Zanuy, D., & Nussinov, R. (2003). Extended disordered proteins: Targeting function with less scaffold. Trends in Biochemical Sciences, 28, 81–85. doi:10.1016/S0968-0004(03)00003-3
  • Haynes, C., Oldfield, C. J., Ji, F., Klitgord, N., Cusick, M. E., Radivojac, P., … Iakoucheva, L. M. (2006). Intrinsic disorder is a common feature of hub proteins from four eukaryotic interactomes. PLOS Computational Biology, 2, e100. doi:10.1371/journal.pcbi.0020100
  • Higurashi, M., Ishida, T., & Kinoshita, K. (2008). Identification of transient hub proteins and the possible structural basis for their multiple interactions. Protein Science, 17, 72–78. doi:10.1110/ps.073196308
  • Jeffery, C. J. (2003). Moonlighting proteins: Old proteins learning new tricks. Trends in Genetics, 19, 415–417. doi:10.1016/S0168-9525(03)00167-7
  • Jordan, I. K., Wolf, Y. I., & Koonin, E. V. (2003). No simple dependence between protein evolution rate and the number of protein–protein interactions: Only the most prolific interactors tend to evolve slowly. BMC Evolutionary Biology, 3, 1.
  • Katoh, K., Misawa, K., Kuma, K., & Miyata, T. (2002). MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research, 30, 3059–3066.
  • Kim, P. M., Lu, L. J., Xia, Y., & Gerstein, M. B. (2006a). Relating three-dimensional structures to protein networks provides evolutionary insights. Science, 314, 1938–1941. doi:10.1126/science.1136174
  • Kim, P. M., Sboner, A., Xia, Y., & Gerstein, M. (2008). The role of disorder in interaction networks: A structural analysis. Molecular Systems Biology, 4, 179. doi:10.1038/msb.2008.16
  • Kim, W. K., Henschel, A., Winter, C., & Schroeder, M. (2006b). The many faces of protein–protein interactions: A compendium of interface geometry. PLOS Computational Biology, 2, e124. doi:10.1371/journal.pcbi.0020124
  • Koonin, E. V., & Wolf, Y. I. (2006). Evolutionary systems biology: Links between gene evolution and function. Current Opinion in Biotechnology, 17, 481–487. doi:10.1016/j.copbio.2006.08.003
  • Korcsmáros, T., Farkas, I. J., Szalay, M. S., Rovó, P., Fazekas, D., Spiró, Z., … Csermely, P. (2010). Uniformly curated signaling pathways reveal tissue-specific cross-talks and support drug target discovery. Bioinformatics, 26, 2042–2050. doi:10.1093/bioinformatics/btq310
  • Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., … Higgins, D. G. (2007). Clustal W and Clustal X version 2.0. Bioinformatics, 23, 2947–2948. doi:10.1093/bioinformatics/btm404
  • Light, S., Sagit, R., Sachenkova, O., Ekman, D., & Elofsson, A. (2013). Protein expansion is primarily due to indels in intrinsically disordered regions. Molecular Biology and Evolution, 30, 2645–2653. doi:10.1093/molbev/mst157
  • Lin, Y. S., Hsu, W. L., Hwang, J. K., & Li, W. H. (2007). Proportion of solvent-exposed amino acids in a protein and rate of protein evolution. Molecular Biology and Evolution, 24, 1005–1011. doi:10.1093/molbev/msm019
  • Lise, S., & Jones, D. T. (2005). Sequence patterns associated with disordered regions in proteins. Proteins, 58, 144–150. doi:10.1002/prot.20279
  • Liu, J., Faeder, J. R., & Camacho, C. J. (2009). Toward a quantitative theory of intrinsically disordered proteins and their function. Proceedings of the National Academy of Sciences of the United States of America, 106, 19819–19823. doi:10.1073/pnas.0907710106
  • Liu, J., Zhang, Y., Lei, X., & Zhang, Z. (2008). Natural selection of protein structural and functional properties: A single nucleotide polymorphism perspective. Genome Biology, 9, R69. doi:10.1186/gb-2008-9-4-r69
  • Mahani, A., Henriksson, J., & Wright, A. P. (2013). Origins of Myc proteins – Using intrinsic protein disorder to trace distant relatives. PLOS One, 8, e75057. doi:10.1371/journal.pone.0075057
  • Makino, T., & Gojobori, T. (2006). The evolutionary rate of a protein is influenced by features of the interacting partners. Molecular Biology and Evolution, 23, 784–789. doi:10.1093/molbev/msj090
  • Nguyen Ba, A. N., Yeh, B. J., van Dyk, D., Davidson, A. R., Andrews, B. J., Weiss, E. L., & Moses, A. M. (2012). Proteome-wide discovery of evolutionary conserved sequences in disordered regions. Science Signaling, 5, rs1. doi:10.1126/scisignal.2002515
  • Park, S. G., & Choi, S. S. (2010). Expression breadth and expression abundance behave differently in correlations with evolutionary rates. BMC Evolutionary Biology, 10, 241. doi:10.1186/1471-2148-10-241
  • Park, Y. R., Kim, J., Lee, H. W., Yoon, Y. J., & Kim, J. H. (2011). GOChase-II: Correcting semantic inconsistencies from Gene Ontology-based annotations for gene products. BMC Bioinformatics, 12(Suppl 1), S40. doi:10.1186/1471-2105-12-S1-S40
  • Patil, A., Kinoshita, K., & Nakamura, H. (2010). Domain distribution and intrinsic disorder in hubs in the human protein–protein interaction network. Protein Science, 19, 1461–1468. doi:10.1002/pro.425
  • Peng, Z., Yan, J., Fan, X., Mizianty, M. J., Xue, B., Wang, K., … Kurgan, L. (2015). Exceptionally abundant exceptions: Comprehensive characterization of intrinsic disorder in all domains of life. Cellular and Molecular Life Sciences, 72, 137–151. doi:10.1007/s00018-014-1661-9
  • Pentony, M. M., & Jones, D. T. (2010). Modularity of intrinsic disorder in the human proteome. Proteins, 78, 212–221. doi:10.1002/prot.22504
  • Pruitt, K. D., Tatusova, T., & Maglott, D. R. (2005). NCBI Reference Sequence (RefSeq): A curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Research, 33, D501–4. doi:10.1093/nar/gki025
  • Punta, M., Coggill, P. C., Eberhardt, R. Y., Mistry, J., Tate, J., Boursnell, C., … Finn, R. D. (2012). The Pfam protein families database. Nucleic Acids Research, 40, D290–301. doi:10.1093/nar/gkr1065
  • Pál, C., Papp, B., & Hurst, L. D. (2001). Highly expressed genes in yeast evolve slowly. Genetics, 158, 927–931.
  • Radivojac, P., Iakoucheva, L. M., Oldfield, C. J., Obradovic, Z., Uversky, V. N., & Dunker, A. K. (2007). Intrinsic disorder and functional proteomics. Biophysical Journal, 92, 1439–1456. doi:10.1529/biophysj.106.094045
  • Rice, P., Longden, I., & Bleasby, A. (2000). EMBOSS: The European Molecular Biology Open Software Suite. Trends in Genetics, 16, 276–277.
  • Schad, E., Tompa, P., & Hegyi, H. (2011). The relationship between proteome size, structural disorder and organism complexity. Genome Biology, 12, R120. doi:10.1186/gb-2011-12-12-r120
  • Schaefer, C., Schlessinger, A., & Rost, B. (2010). Protein secondary structure appears to be robust under in silico evolution while protein disorder appears not to be. Bioinformatics, 26, 625–631. doi:10.1093/bioinformatics/btq012
  • Schlessinger, A., Schaefer, C., Vicedo, E., Schmidberger, M., Punta, M., & Rost, B. (2011). Protein disorder – a breakthrough invention of evolution? Current Opinion in Structural Biology, 21, 412–418. doi:10.1016/j.sbi.2011.03.014
  • Singh, G. P., Ganapathi, M., & Dash, D. (2007). Role of intrinsic disorder in transient interactions of hub proteins. Proteins, 66, 761–765. doi:10.1002/prot.21281
  • Su, A. I., Cooke, M. P., Ching, K. A., Hakak, Y., Walker, J. R., Wiltshire, T., … Hogenesch, J. B. (2002). Large-scale analysis of the human and mouse transcriptomes. Proceedings of the National Academy of Sciences of the United States of America, 99, 4465–4470. doi:10.1073/pnas.012025199
  • Su, A. I., Wiltshire, T., Batalov, S., Lapp, H., Ching, K. A., Block, D., … Hogenesch, J. B. (2004). A gene atlas of the mouse and human protein-encoding transcriptomes. Proceedings of the National Academy of Sciences of the United States of America, 101, 6062–6067. doi:10.1073/pnas.0400782101
  • Subramanian, S., & Kumar, S. (2004). Gene expression intensity shapes evolutionary rates of the proteins encoded by the vertebrate genome. Genetics, 168, 373–381. doi:10.1534/genetics.104.028944
  • Sugase, K., Dyson, H. J., & Wright, P. E. (2007). Mechanism of coupled folding and binding of an intrinsically disordered protein. Nature, 447, 1021–1025. doi:10.1038/nature05858
  • Team, R. D. C. (2011). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2011; ISBN: 3-900051-07-0.
  • Tomala, K., & Korona, R. (2013). Evaluating the fitness cost of protein expression in Saccharomyces cerevisiae. Genome Biology and Evolution, 5, 2051–2060. doi:10.1093/gbe/evt154
  • Tompa, P. (2002). Intrinsically unstructured proteins. Trends in Biochemical Sciences, 27, 527–533.
  • Tompa, P. (2003). Intrinsically unstructured proteins evolve by repeat expansion. BioEssays, 25, 847–855. doi:10.1002/bies.10324
  • Tompa, P., & Fuxreiter, M. (2008). Fuzzy complexes: Polymorphism and structural disorder in protein–protein interactions. Trends in Biochemical Sciences, 33, 2–8. doi:10.1016/j.tibs.2007.10.003
  • Tompa, P., Fuxreiter, M., Oldfield, C. J., Simon, I., Dunker, A. K., & Uversky, V. N. (2009). Close encounters of the third kind: Disordered domains and the interactions of proteins. BioEssays, 31, 328–335. doi:10.1002/bies.200800151
  • Tuller, T., Kupiec, M., & Ruppin, E. (2008). Evolutionary rate and gene expression across different brain regions. Genome Biology, 9, R142. doi:10.1186/gb-2008-9-9-r142
  • Uversky, V. N. (2002). What does it mean to be natively unfolded? European Journal of Biochemistry, 269, 2–12.
  • Uversky, V. N., Gillespie, J. R., & Fink, A. L. (2000). Why are “natively unfolded” proteins unstructured under physiologic conditions? Proteins, 41, 415–427.
  • Vavouri, T., Semple, J. I., Garcia-Verdugo, R., & Lehner, B. (2009). Intrinsic protein disorder and interaction promiscuity are widely associated with dosage sensitivity. Cell, 138, 198–208. doi:10.1016/j.cell.2009.04.029
  • Vogel, C., Bashton, M., Kerrison, N. D., Chothia, C., & Teichmann, S. A. (2004). Structure, function and evolution of multidomain proteins. Current Opinion in Structural Biology, 14, 208–216. doi:10.1016/j.sbi.2004.03.011
  • Wall, D. P., Hirsh, A. E., Fraser, H. B., Kumm, J., Giaever, G., Eisen, M. B., & Feldman, M. W. (2005). Functional genomic analysis of the rates of protein evolution. Proceedings of the National Academy of Sciences of the United States of America, 102, 5483–5488. doi:10.1073/pnas.0501761102
  • Walsh, I., Martin, A. J., Di Domenico, T., & Tosatto, S. C. (2012). ESpritz: Accurate and fast prediction of protein disorder. Bioinformatics, 28, 503–509. doi:10.1093/bioinformatics/btr682
  • Ward, J. J., Sodhi, J. S., McGuffin, L. J., Buxton, B. F., & Jones, D. T. (2004). Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. Journal of Molecular Biology, 337, 635–645. doi:10.1016/j.jmb.2004.02.002
  • Williams, R. M., Obradovi, Z., Mathura, V., Braun, W., Garner, E. C., Young, J., … Dunker, A. K. (2001). The protein non-folding problem: Amino acid determinants of intrinsic order and disorder. Pacific Symposium on Biocomputing, 6, 89–100.
  • Wright, P. E., & Dyson, H. J. (2009). Linking folding and binding. Current Opinion in Structural Biology, 19, 31–38. doi:10.1016/j.sbi.2008.12.003
  • Wu, C., Orozco, C., Boyer, J., Leglise, M., Goodale, J., Batalov, S., … Su, A. I. (2009). BioGPS: An extensible and customizable portal for querying and organizing gene annotation resources. Genome Biology, 10, R130. doi:10.1186/gb-2009-10-11-r130
  • Wu, Z., Hu, G., Yang, J., Peng, Z., Uversky, V. N., & Kurgan, L. (2015). In various protein complexes, disordered protomers have large per-residue surface areas and area of protein-, DNA- and RNA-binding interfaces. FEBS Letters, 589, 2561–2569. doi:10.1016/j.febslet.2015.08.014
  • Xue, B., Dunbrack, R. L., Williams, R. W., Dunker, A. K., & Uversky, V. N. (2010). PONDR-FIT: A meta-predictor of intrinsically disordered amino acids. Biochimica et Biophysica Acta, 1804, 996–1010. doi:10.1016/j.bbapap.2010.01.011
  • Yang, J. R., Liao, B. Y., Zhuang, S. M., & Zhang, J. (2012). Protein misinteraction avoidance causes highly expressed proteins to evolve slowly. Proceedings of the National Academy of Sciences of the United States of America, 109, E831–40. doi:10.1073/pnas.1117408109
  • Yang, J., Su, A. I., & Li, W. H. (2005). Gene expression evolves faster in narrowly than in broadly expressed mammalian genes. Molecular Biology and Evolution, 22, 2113–2118. doi:10.1093/molbev/msi206
  • Yang, Z. (1997). PAML: A program package for phylogenetic analysis by maximum likelihood. Computer Applications in the Biosciences, 13, 555–556.
  • Yang, Z., & Nielsen, R. (2000). Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models. Molecular Biology and Evolution, 17, 32–43.
  • Zhang, L., & Li, W. H. (2004). Mammalian housekeeping genes evolve more slowly than tissue-specific genes. Molecular Biology and Evolution, 21, 236–239. doi:10.1093/molbev/msh010

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.