176
Views
6
CrossRef citations to date
0
Altmetric
Research Articles

Dynamics and modulation studies of human voltage gated Kv1.5 channel

&
Pages 380-398 | Received 03 Dec 2015, Accepted 18 Jan 2016, Published online: 24 Feb 2016

References

  • Aggarwal, S. K., & MacKinnon, R. (1996). Contribution of the S4 segment to gating charge in the shaker K+ channel. Neuron, 16, 1169–1177. doi:10.1016/S0896-6273(00)80143-9
  • Alpert, J. S., Petersen, P., & Godtfredsen, J. (1988). Atrial fibrillation: Natural history, complications, and management. Annual Review of Medicine, 39, 41–52. doi:10.1146/annurev.me.39.020188.000353
  • Amos, G. J., Wettwer, E., Metzger, F., Li, Q., Himmel, H. M., & Ravens, U. (1996). Differences between outward currents of human atrial and subepicardial ventricular myocytes. The Journal of Physiology, 491, 31–50. doi:10.1113/jphysiol.1996.sp021194
  • Andér, M., Luzhkov, V. B., & Åqvist, J. (2008). Ligand binding to the voltage-gated Kv1.5 potassium channel in the open state—docking and computer simulations of a homology model. Biophysical Journal, 94, 820–831. doi:10.1529/biophysj.107.112045
  • Åqvist, J., Medina, C., & Samuelsson, J. E. (1994). A new method for predicting binding affinity in computer-aided drug design. Protein Engineering, Design and Selection, 7, 385–391. doi:10.1093/protein/7.3.385
  • Åqvist, J., Luzhkov, V. B., & Brandsdal, B. O. (2002). Ligand binding affinities from MD simulations. Accounts of Chemical Research, 35, 358–365. doi:10.1021/ar010014p
  • Ashcroft, F. M. (2000). Ion channels and disease. London: Academic Press.
  • Bachmann, A., Gutcher, I., Kopp, K., Brendel, J., Bosch, R. F., Busch, A. E., & Gogelein, H. (2001). Characterization of a novel Kv1.5 channel blocker in Xenopus oocytes, CHO cells, human and rat cardiomyocytes. Naunyn-Schmiedeberg’s Archives of Pharmacology, 364, 472–478. doi:10.1007/s002100100474
  • Bhuyan, R., & Seal, A. (2015a). Conformational dynamics of shaker-type Kv1.1 ion channel in open, closed, and two mutated states. The Journal of Membrane Biology, 248, 241–255. doi:10.1007/s00232-014-9764-7
  • Bhuyan, R., & Seal, A. (2015). Molecular dynamics of Kv1.3 ion channel and structural basis of its inhibition by scorpion toxin-OSK1 derivatives. Biophysical Chemistry, 203, 1–11. doi:10.1016/j.bpc.2015.04.004
  • Brendel, J., & Peukert, S. (2003). Blockers of the Kv1.5 channel for the treatment of atrial arrhythmias. Current Medicinal Chemistry-Cardiovascular & Hematological Agents, 1, 273–287. doi:10.2174/1568016033477441
  • Caballero, R., Moreno, I., Gonzalez, T., Valenzuela, C., Tamargo, J., & Delpon, E. (2002). Putative binding sites for benzocaine on a human cardiac cloned channel (Kv1.5). Cardiovascular Research, 56, 104–117. doi:10.1016/S0008-6363(02)00509-6
  • Camm, A. J., & Savelieva, I. (2004). Advances in antiarrhythmic drug treatment of atrial fibrillation: where do we stand now? Heart Rhythm, 1, 244–246. doi:10.1016/j.hrthm.2004.02.023
  • Choudhury, A., & Lip, G. Y. (2004). Antiarrhythmic drugs in atrial fibrillation: an overview of new agents, their mechanisms of action and potential clinical utility. Expert Opinion on Investigational Drugs, 13, 841–855. doi:10.1517/13543784.13.7.841
  • Chugh, S. S., Blackshear, J. L., Shen, W. K., Hammill, S. C., & Gersh, B. J. (2001). Epidemiology and natural history of atrial fibrillation: Clinical implications. Journal of the American College of Cardiology, 37, 371–378. doi:10.1016/S0735-1097(00)01107-4
  • Clayton, G. M., Altieri, S., Heginbotham, L., Unger, V. M., & Morais-Cabral, J. H. (2008). Structure of the transmembrane regions of a bacterial cyclic nucleotide-regulated channel. Proceedings of the National Academy of Sciences, 105, 1511–1515. doi:10.1073/pnas.0711533105
  • Decher, N., Pirard, B., Bundis, F., Peukert, S., Baringhaus, K. H., Busch, A. E., … Sanguinetti, M. C. (2004). Molecular basis for Kv1.5 channel block: Conservation of drug binding sites among voltage-gated K+ channels. Journal of Biological Chemistry, 279, 394–400. doi:10.1074/jbc.M307411200
  • Decher, N., Kumar, P., Gonzalez, T., Pirard, B., & Sanguinetti, M. C. (2006). Binding site of a novel Kv1.5 blocker: A “Foot in the Door” against atrial fibrillation. Molecular Pharmacology, 70, 1204–1211. doi:10.1124/mol.106.026203
  • DeLano, W. L. (2002). The PyMOL Molecular Graphics System (Version 1.1) (Computer software). Schrödinger, LLC.
  • Durell, S. R., Hao, Y., & Guy, H. R. (1998). Structural models of the transmembrane region of voltage-gated and other K+channels in open, closed, and inactivated conformations. Journal of Structural Biology, 121, 263–284. doi:10.1006/jsbi.1998.3962
  • Eldstrom, J., & Fedida, D. (2009). Modeling of high-affinity binding of the novel atrial anti-arrhythmic agent, vernakalant, to Kv1.5 channels. Journal of Molecular Graphics and Modelling, 28, 226–235. doi:10.1016/j.jmgm.2009.07.005
  • Eldstrom, J., Wang, Z., Xu, H., Pourrier, M., Ezrin, A., Gibson, K., & Fedida, D. (2007). The molecular basis of high-affinity binding of the antiarrhythmic compound vernakalant (RSD1235) to Kv1.5 channels. Molecular Pharmacology, 72, 1522–1534. doi:10.1124/mol.107.039388
  • Fedida, D., Wible, B., Wang, Z., Fermini, B., Faust, F., Nattel, S., & Brown, A. M. (1993). Identity of a novel delayed rectifier current from human heart with a cloned K+ channel current. Circulation Research, 73, 210–216. doi:10.1161/01.RES.73.1.210
  • Fedida, D., Eldstrom, J., Hesketh, J. C., Lamorgese, M., Castel, L., Steele, D. F., & Van Wagoner, D. R. (2003). Kv1.5 is an important component of repolarizing K+ current in canine atrial myocytes. Circulation Research, 93, 744–751. doi:10.1161/01.RES.0000096362.60730.AE
  • Feng, J., Wible, B., Li, G. R., Wang, Z., & Nattel, S. (1997). Antisense oligodeoxynucleotides directed against Kv1.5 mRNA specifically inhibit ultrarapid delayed rectifier K+ current in cultured adult human atrial myocytes. Circulation Research, 80, 572–579. doi:10.1161/01.RES.80.4.572
  • Feng, J., Xu, D., Wang, Z., & Nattel, S. (1998). Ultrarapid delayed rectifier current inactivation in human atrial myocytes: Properties and consequences. American Journal of Physiology-Heart and Circulatory Physiology, 275, H1717–1725. Retrieved from http://ajpheart.physiology.org/content/275/5/H1717.long
  • Franqueza, L., Longobardo, M., Vicente, J., Delpon, E., Tamkun, M. M., Tamargo, J., … Valenzuela, C. (1997). Molecular determinants of stereoselective bupivacaine block of hKv1.5 channels. Circulation Research, 81, 1053–1064. doi:10.1161/01.RES.81.6.1053
  • Gerlach, U., Brendel, J., Lang, H. J., Paulus, E. F., Weidmann, K., Brüggemann, A., … Greger, R. (2001). Synthesis and activity of novel and selective I Ks -channel blockers. Journal of Medicinal Chemistry, 44, 3831–3837. doi:10.1021/jm0109255
  • Irwin, J. J., & Shoichet, B. K. (2005). ZINC − a free database of commercially available compounds for virtual screening. Journal of Chemical Information and Modeling, 45, 177–182. doi:10.1021/ci049714+
  • Jensen, M. O., Jogini, V., Borhani, D. W., Leffler, A. E., Dror, R. O., & Shaw, D. E. (2012). Mechanism of voltage gating in potassium channels. Science, 336, 229–233. doi:10.1126/science.1216533
  • Jiang, Y., Lee, A., Chen, J., Ruta, V., Cadene, M., Chait, B. T., & MacKinnon, R. (2003). X-ray structure of a voltage-dependent K+ channel. Nature, 423, 33–41. doi:10.1038/nature01580
  • Jones, G., Willett, P., Glen, R. C., Leach, A. R., & Taylor, R. (1997). Development and validation of a genetic algorithm for flexible docking. Journal of Molecular Biology, 267, 727–748. doi:10.1006/jmbi.1996.0897
  • Kabsch, W., & Sander, C. (1983). Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features. Biopolymers, 22, 2577–2637. doi:10.1002/bip.360221211
  • Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., … Higgins, D. G. (2007). Clustal W and Clustal X version 2.0. Bioinformatics, 23, 2947–2948. doi:10.1093/bioinformatics/btm404
  • Laskowski, R. A., & Swindells, M. B. (2011). LigPlot+: Multiple ligand–protein interaction diagrams for drug discovery. Journal of Chemical Information and Modeling, 51, 2778–2786. doi:10.1021/ci200227u
  • Lee, S. Y., Banerjee, A., & MacKinnon, R. (2009). Two separate interfaces between the voltage sensor and pore are required for the function of voltage-dependent K(+) channels. PLoS Biology, 7, e47. doi:10.1371/journal.pbio.1000047
  • Li, G. R., Feng, J., Yue, L., Carrier, M., & Nattel, S. (1996). Evidence for two components of delayed rectifier K+ current in human ventricular myocytes. Circulation Research, 78, 689–696. doi:10.1161/01.RES.78.4.689
  • Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2001). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 46, 3–26. doi:10.1016/j.addr.2012.09.019
  • Long, S. B., Campbell, E. B., & Mackinnon, R. (2005). Crystal structure of a mammalian voltage-dependent shaker family K+ channel. Science, 309, 897–903. doi:10.1126/science.1116269
  • Long, S. B., Tao, X., Campbell, E. B., & MacKinnon, R. (2007). Atomic structure of a voltage-dependent K+ channel in a lipid membrane-like environment. Nature, 450, 376–382. doi:10.1038/nature06265
  • MacDonald, P. E., & Wheeler, M. B. (2003). Voltage-dependent K(+) channels in pancreatic beta cells: Role, regulation and potential as therapeutic targets. Diabetologia, 46, 1046–1062. doi:10.1007/s00125-003-1159-8
  • Milescu, M., Bosmans, F., Lee, S., Alabi, A. A., Kim, J. I., & Swartz, K. J. (2009). Interactions between lipids and voltage sensor paddles detected with tarantula toxins. Nature Structural & Molecular Biology, 16, 1080–1085. doi:10.1038/nsmb.1679
  • Nattel, S., Yue, L., & Wang, Z. (1999). Cardiac ultrarapid delayed rectifiers. Cellular Physiology and Biochemistry, 9, 217–226. doi:10.1159/000016318
  • Papazian, D. M., Shao, X. M., Seoh, S. A., Mock, A. F., Huang, Y., & Wainstock, D. H. (1995). Electrostatic interactions of S4 voltage sensor in shaker K+ channel. Neuron, 14, 1293–1301. doi:10.1016/0896-6273(95)90276-7
  • Pathak, M. M., Yarov-Yarovoy, V., Agarwal, G., Roux, B., Barth, P., Kohout, S., … Isacoff, E. Y. (2007). Closing in on the resting state of the shaker K+ channel. Neuron, 56, 124–140. doi:10.1016/j.neuron.2007.09.023
  • Peters, N. S., Schilling, R. J., Kanagaratnam, P., & Markides, V. (2002). Atrial fibrillation: strategies to control, combat, and cure. The Lancet, 359, 593–603. doi:10.1016/S0140-6736(02)07748-6
  • Peukert, S., & Gögelein, H. (2006). Drugs active at Kv1. 5 potassium channels (1). In D. J. Triggle, M. Gopalakrishnan, & D. Rampe (Eds.), Voltage-gated ion channels as drug targets (pp. 275–309). Weinheim: Wiley-VCH Verlag GmbH.10.1002/3527608141
  • Peukert, S., Brendel, J., Pirard, B., Brüggemann, A., Below, P., Kleemann, H. W., … Schmidt, W. (2003). Identification, synthesis, and activity of novel blockers of the voltage-gated potassium channel Kv1.5. Journal of Medicinal Chemistry, 46, 486–498. doi:10.1021/jm0210461
  • Peukert, S., Brendel, J., Pirard, B., Strubing, C., Kleemann, H. W., Bohme, T., & Hemmerle, H. (2004). Pharmacophore-based search, synthesis, and biological evaluation of anthranilic amides as novel blockers of the Kv1.5 channel. Bioorganic & Medicinal Chemistry Letters, 14, 2823–2827. doi:10.1016/j.bmcl.2004.03.057
  • Pronk, S., Pall, S., Schulz, R., Larsson, P., Bjelkmar, P., Apostolov, R., … Lindahl, E. (2013). GROMACS 4.5: A high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics, 29, 845–854. doi:10.1093/bioinformatics/btt055
  • Roberds, S. L., & Tamkun, M. M. (1991). Cloning and tissue-specific expression of five voltage-gated potassium channel cDNAs expressed in rat heart. Proceedings of the National Academy of Sciences, 88, 1798–1802. Retrieved from http://www.pnas.org/content/88/5/1798.long10.1073/pnas.88.5.1798
  • Roe, M. W., Worley, J. F., 3rd, Mittal, A. A., Kuznetsov, A., DasGupta, S., Mertz, R. J., … Philipson, L. H. (1996). Expression and function of pancreatic beta-cell delayed rectifier K+ channels. Role in stimulus-secretion coupling. Journal of Biological Chemistry, 271, 32241–32246. doi:10.1074/jbc.271.50.32241
  • Schaffer, P., Pelzmann, B., Bernhart, E., Lang, P., Lokebo, J. E., Machler, H., … Koidl, B. (1998). Estimation of outward currents in isolated human atrial myocytes using inactivation time course analysis. Pflügers Archiv European Journal of Physiology, 436, 457–468. doi:10.1007/s004240050657.
  • Schüttelkopf, A. W., & van Aalten, D. M. (2004). PRODRG: A tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallographica Section D: Biological Crystallography, 60, 1355–1363. doi:10.1107/S0907444904011679
  • Seoh, S. A., Sigg, D., Papazian, D. M., & Bezanilla, F. (1996). Voltage-sensing residues in the S2 and S4 segments of the shaker K+ channel. Neuron, 16, 1159–1167. doi:10.1016/S0896-6273(00)80142-7
  • Snyders, D. J., & Yeola, S. W. (1995). Determinants of antiarrhythmic drug action : Electrostatic and hydrophobic components of block of the human cardiac hKv1.5 channel. Circulation Research, 77, 575–583. doi:10.1161/01.RES.77.3.575
  • Snyders, J., Knoth, K. M., Roberds, S. L., & Tamkun, M. M. (1992). Time-, voltage-, and state-dependent block by quinidine of a cloned human cardiac potassium channel. Molecular Pharmacology, 41, 322–330. Retrieved from http://molpharm.aspetjournals.org/content/41/2/322.long
  • Snyders, D. J., Tamkun, M. M., & Bennett, P. B. (1993). A rapidly activating and slowly inactivating potassium channel cloned from human heart. Functional analysis after stable mammalian cell culture expression. The Journal of General Physiology, 101, 513–543. doi:10.1085/jgp.101.4.513
  • Soler-Llavina, G. J., Chang, T. H., & Swartz, K. J. (2006). Functional interactions at the interface between voltage-sensing and pore domains in the shaker Kv channel. Neuron, 52, 623–634. doi:10.1016/j.neuron.2006.10.005
  • Strutz-Seebohm, N., Gutcher, I., Decher, N., Steinmeyer, K., Lang, F., & Seebohm, G. (2007). Comparison of potent Kv1.5 potassium channel inhibitors reveals the molecular basis for blocking kinetics and binding mode. Cellular Physiology and Biochemistry, 20, 791–800. doi:10.1159/000110439
  • Su, J., Yu, H., Lenka, N., Hescheler, J., & Ullrich, S. (2001). The expression and regulation of depolarization-activated K+ channels in the insulin-secreting cell line INS-1. Pflügers Archiv European Journal of Physiology, 442, 49–56. doi:10.1007/s004240000508.
  • Tiwari-Woodruff, S. K., Schulteis, C. T., Mock, A. F., & Papazian, D. M. (1997). Electrostatic interactions between transmembrane segments mediate folding of Shaker K+ channel subunits. Biophysical Journal, 72, 1489–1500. doi:10.1016/S0006-3495(97)78797-6
  • Tombola, F., Pathak, M. M., & Isacoff, E. Y. (2005). Voltage-sensing arginines in a potassium channel permeate and occlude cation-selective pores. Neuron, 45, 379–388. doi:10.1016/j.neuron.2004.12.047
  • Tytgat, J., Chandy, K. G., Garcia, M. L., Gutman, G. A., Martin-Eauclaire, M. F., van der Walt, J. J., & Possani, L. D. (1999). A unified nomenclature for short-chain peptides isolated from scorpion venoms: α-KTx molecular subfamilies. Trends in Pharmacological Sciences, 20, 444–447. doi:10.1016/S0165-6147(99)01398-X
  • Villalba-Galea, C. A., Sandtner, W., Starace, D. M., & Bezanilla, F. (2008). S4-based voltage sensors have three major conformations. Proceedings of the National Academy of Sciences, 105, 17600–17607. doi:10.1073/pnas.0807387105
  • Wang, Z., Fermini, B., & Nattel, S. (1993). Sustained depolarization-induced outward current in human atrial myocytes. Evidence for a novel delayed rectifier K+ current similar to Kv1.5 cloned channel currents. Circulation Research, 73, 1061–1076. doi:10.1161/01.RES.73.6.1061
  • Wu, S., Fluxe, A., Janusz, J. M., Sheffer, J. B., Browning, G., Blass, B., … Djandjighian, L. (2006). Discovery and synthesis of tetrahydroindolone derived semicarbazones as selective Kv1.5 blockers. Bioorganic & Medicinal Chemistry Letters, 16, 5859–5863. doi:10.1016/j.bmcl.2006.08.057
  • Yang, Q., Du, L., Wang, X., Li, M., & You, Q. (2008). Modeling the binding modes of Kv1.5 potassium channel and blockers. Journal of Molecular Graphics and Modelling, 27, 178–187. doi:10.1016/j.jmgm.2008.04.002
  • Yeola, S. W., Rich, T. C., Uebele, V. N., Tamkun, M. M., & Snyders, D. J. (1996). Molecular analysis of a binding site for quinidine in a human cardiac delayed rectifier K+ channel: Role of S6 in antiarrhythmic drug binding. Circulation Research, 78, 1105–1114. doi:10.1161/01.RES.78.6.1105
  • Zagotta, W. N., Hoshi, T., & Aldrich, R. W. (1994). Shaker potassium channel gating. III: Evaluation of kinetic models for activation. The Journal of General Physiology, 103, 321–362. doi:10.1085/jgp.103.2.321
  • Zimin, P. I., Garic, B., Bodendiek, S. B., Mahieux, C., Wulff, H., & Zhorov, B. S. (2010). Potassium channel block by a tripartite complex of two cationophilic ligands and a potassium ion. Molecular Pharmacology, 78, 588–599. doi:10.1124/mol.110.064014

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.