191
Views
8
CrossRef citations to date
0
Altmetric
Research Articles

Probing the interaction mechanism of small molecule inhibitors with matriptase based on molecular dynamics simulation and free energy calculations

, &
Pages 755-764 | Received 16 Jan 2016, Accepted 26 Feb 2016, Published online: 04 Apr 2016

References

  • Antalis, T. M., Buzza, M. S., Hodge, K. M., Hooper, J. D., & Netzel-Arnett, S. (2010). The cutting edge: Membrane-anchored serine protease activities in the pericellular microenvironment. Biochemical Journal, 428, 325–346. doi:10.1042/bj20100046
  • Basel-Vanagaite, L., Attia, R., Ishida-Yamamoto, A., Rainshtein, L., Ben Amitai, D., Lurie, R., … Shohat, M. (2007). Autosomal recessive ichthyosis with hypotrichosis caused by a mutation in ST14, encoding type II transmembrane serine protease matriptase. The American Journal of Human Genetics, 80, 467–477. doi:10.1086/512487
  • Case, D. E., Darden, T., Cheatham, T., Simmerling, C., Wang, J., Duke, R., … Merz, K. (2010). Amber 11. San Francisco: University of California.
  • Coghlin, C., & Murray, G. I. (2010). Current and emerging concepts in tumour metastasis. The Journal of Pathology, 222(1), 1–15. doi:10.1002/path.2727
  • Colombo, E., Désilets, A., Duchêne, D., Chagnon, F., Najmanovich, R., Leduc, R., & Marsault, E. (2012). Design and synthesis of potent, selective inhibitors of matriptase. ACS Medicinal Chemistry Letters, 3, 530–534. doi:10.1021/ml3000534
  • Cui, Y.-L., Zheng, Q.-C., Zhang, J.-L., Xue, Q., Wang, Y., & Zhang, H.-X. (2013). Molecular dynamic investigations of the mutational effects on structural characteristics and tunnel geometry in CYP17A1. Journal of Chemical Information and Modeling, 53, 3308–3317. doi:10.1021/ci400553w
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98, 10089–10092. doi:10.1063/1.464397
  • Deryugina, E. I., & Quigley, J. P. (2006). Matrix metalloproteinases and tumor metastasis. Cancer and Metastasis Reviews, 25, 9–34.10.1007/s10555-006-7886-9
  • Desilets, A., Beliveau, F., Vandal, G., McDuff, F. O., Lavigne, P., & Leduc, R. (2008). Mutation G827R in matriptase causing autosomal recessive ichthyosis with hypotrichosis yields an inactive protease. Journal of Biological Chemistry, 283, 10535–10542. doi:10.1074/jbc.M707012200
  • Duffy, M. (1987). Do proteases play a role in cancer invasion and metastasis? European Journal of Cancer and Clinical Oncology, 23, 583–589.10.1016/0277-5379(87)90326-9
  • Enyedy, I. J., Lee, S. L., Kuo, A. H., Dickson, R. B., Lin, C. Y., & Wang, S. M. (2001). Structure-based approach for the discovery of bis-benzamidines as novel inhibitors of matriptase. Journal of Medicinal Chemistry, 44, 1349–1355. doi:10.1021/jm000395x
  • Galkin, A. V., Mullen, L., Fox, W. D., Brown, J., Duncan, D., Moreno, O., … Agus, D. B. (2004). CVS-3983, a selective matriptase inhibitor, suppresses the growth of androgen independent prostate tumor xenografts. The Prostate, 61, 228–235. doi:10.1002/pros.20094
  • Gordon, J. C., Myers, J. B., Folta, T., Shoja, V., Heath, L. S., & Onufriev, A. (2005). H++: A server for estimating pKas and adding missing hydrogens to macromolecules. Nucleic Acids Research, 33( Web Server issue), W368–W371. doi:10.1093/nar/gki464
  • Goswami, R., Mukherjee, S., Ghadiyaram, C., Wohlfahrt, G., Sistla, R. K., Nagaraj, J., … Ramachandra, M. (2014). Structure-guided discovery of 1,3,5 tri-substituted benzenes as potent and selective matriptase inhibitors exhibiting in vivo antitumor efficacy. Bioorganic & Medicinal Chemistry, 22, 3187–3203. doi:10.1016/j.bmc.2014.04.013
  • Goswami, R., Mukherjee, S., Wohlfahrt, G., Ghadiyaram, C., Nagaraj, J., Chandra, B. R., … Ramachandra, M. (2013). Discovery of pyridyl bis(oxy)dibenzimidamide derivatives as selective matriptase inhibitors. ACS Medicinal Chemistry Letters, 4, 1152–1157. doi:10.1021/ml400213v
  • Gray, K., Elghadban, S., Thongyoo, P., Owen, K. A., Szabo, R., Bugge, T. H., … Ellis, V. (2014). Potent and specific inhibition of the biological activity of the type-II transmembrane serine protease matriptase by the cyclic microprotein MCoTI-II. Thrombosis and Haemostasis, 112, 402–411. doi:10.1160/TH13-11-0895
  • Hawkins, G. D., Cramer, C. J., & Truhlar, D. G. (1996). Parametrized models of aqueous free energies of solvation based on pairwise descreening of solute atomic charges from a dielectric medium. The Journal of Physical Chemistry, 100, 19824–19839.10.1021/jp961710n
  • Heutinck, K. M., ten Berge, I. J., Hack, C. E., Hamann, J., & Rowshani, A. T. (2010). Serine proteases of the human immune system in health and disease. Molecular Immunology, 47, 1943–1955. doi:10.1016/j.molimm.2010.04.020
  • Hooper, J. D., Clements, J. A., Quigley, J. P., & Antalis, T. M. (2001). Type II transmembrane serine proteases. Insights into an emerging class of cell surface proteolytic enzymes. Journal of Biological Chemistry, 276, 857–860. doi:10.1074/jbc.R000020200
  • Hornak, V., Abel, R., Okur, A., Strockbine, B., Roitberg, A., & Simmerling, C. (2006). Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins-Structure Function and Bioinformatics, 65, 712–725. doi:10.1002/prot.21123
  • Hou, T., Li, N., Li, Y., & Wang, W. (2012). Characterization of domain–peptide interaction interface: Prediction of SH3 domain-mediated protein–protein interaction network in yeast by generic structure-based models. Journal of Proteome Research, 11, 2982–2995. doi:10.1021/pr3000688
  • Jiang, S., Li, P., Lee, S. L., Lin, C. Y., Long, Y. Q., Johnson, M. D., … Roller, P. P. (2007). Design and synthesis of redox stable analogues of sunflower trypsin. Organic Letters, 9, 9–12. doi:10.1021/ol0621497
  • Kang, J. Y., Dolled-Filhart, M., Ocal, I. T., Singh, B., Lin, C. Y., Dickson, R. B., … Camp, R. L. (2003). Tissue microarray analysis of hepatocyte growth factor/Met pathway components reveals a role for Met, matriptase, and hepatocyte growth factor activator inhibitor 1 in the progression of node-negative breast cancer. Cancer Research, 63, 1101–1105.
  • Kräutler, V., van Gunsteren, W. F., & Hünenberger, P. H. (2001). A fast SHAKE algorithm to solve distance constraint equations for small molecules in molecular dynamics simulations. Journal of Computational Chemistry, 22, 501–508. doi:10.1002/1096-987X(20010415)
  • Lee, M. S., Kiyomiya, K., Benaud, C., Dickson, R. B., & Lin, C. Y. (2005). Simultaneous activation and hepatocyte growth factor activator inhibitor 1-mediated inhibition of matriptase induced at activation foci in human mammary epithelial cells. American Journal of Physiology-Cell Physiology, 288, C932–C941. doi:10.1152/ajpcell.00497.2004
  • Lin, C. Y., Anders, J., Johnson, M., & Dickson, R. B. (1999). Purification and characterization of a complex containing matriptase and a Kunitz-type serine protease inhibitor from human milk. Journal of Biological Chemistry, 274, 18237–18242. doi:10.1074/jbc.274.26.18237
  • Li, P., Jiang, S., Lee, S. L., Lin, C. Y., Johnson, M. D., Dickson, R. B., … Roller, P. P. (2007). Design and synthesis of novel and potent inhibitors of the type II transmembrane serine protease, matriptase, based upon the sunflower trypsin inhibitor-1. Journal of Medicinal Chemistry, 50, 5976–5983. doi:10.1021/jm0704898
  • List, K., Szabo, R., Molinolo, A., Sriuranpong, V., Redeye, V., Murdock, T., … Bugge, T. H. (2005). Deregulated matriptase causes ras-independent multistage carcinogenesis and promotes ras-mediated malignant transformation. Genes & Development, 19, 1934–1950. doi:10.1101/gad.1300705
  • Long, Y. Q., Lee, S. L., Lin, C. Y., Enyedy, I. J., Wang, S. M., Li, P., … Roller, P. P. (2001). Synthesis and evaluation of the sunflower derived trypsin inhibitor as a potent inhibitor of the type II transmembrane serine protease, matriptase. Bioorganic & Medicinal Chemistry Letters, 11, 2515–2519. doi:10.1016/s0960-894x(01)00493-0
  • Pearlman, D. A., Case, D. A., Caldwell, J. W., Ross, W. S., Cheatham, T. E., III, DeBolt, S., … Kollman, P. (1995). AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules. Computer Physics Communications, 91(1–3), 1–41. doi:10.1016/0010-4655(95)00041-D
  • Quimbar, P., Malik, U., Sommerhoff, C. P., Kaas, Q., Chan, L. Y., Huang, Y. H., … Daly, N. L. (2013). High-affinity cyclic peptide matriptase inhibitors. Journal of Biological Chemistry, 288, 13885–13896. doi:10.1074/jbc.M113.460030
  • Saleem, M., Adhami, V. M., Zhong, W., Longley, B. J., Lin, C. Y., Dickson, R. B., … Mukhtar, H. (2006). A novel biomarker for staging human prostate adenocarcinoma: Overexpression of matriptase with concomitant loss of its inhibitor, hepatocyte growth factor activator inhibitor-1. Cancer Epidemiology Biomarkers & Prevention, 15, 217–227. doi:10.1158/1055-9965.EPI-05-0737
  • Shao, J. Y., Tanner, S. W., Thompson, N., & Cheatham, T. E. (2007). Clustering molecular dynamics trajectories: 1. Characterizing the performance of different clustering algorithms. Journal of Chemical Theory and Computation, 3, 2312–2334. doi:10.1021/ct700119m
  • Steinmetzer, T., Schweinitz, A., Stürzebecher, A., Dönnecke, D., Uhland, K., Schuster, O., … Sturzbecher, J. (2006). Secondary amides of sulfonylated 3-amidinophenylalanine. New potent and selective inhibitors of matriptase. Journal of Medicinal Chemistry, 49, 4116–4126. doi:10.1021/jm0512721
  • Szabo, R., Molinolo, A., List, K., & Bugge, T. H. (2007). Matriptase inhibition by hepatocyte growth factor activator inhibitor-1 is essential for placental development. Oncogene, 26, 1546–1556. doi:10.1038/sj.onc.1209966
  • Szabo, R., Wu, Q. Y., Dickson, R. B., Netzel-Arnett, S., Antalis, T. M., & Bugge, T. H. (2003). Type II transmembrane serine proteases. Thrombosis and Haemostasis, 90, 185–193. doi:10.1160/th03-02-0071
  • Uhland, K. (2006). Matriptase and its putative role in cancer. Cellular and Molecular Life Sciences, 63, 2968–2978. doi:10.1016/0010-4655(95)00041-D
  • Wang, J. M., Wolf, R. M., Caldwell, J. W., Kollman, P. A., & Case, D. A. (2004). Development and testing of a general Amber force field. Journal of Computational Chemistry, 25, 1157–1174. doi:10.1002/jcc.20035
  • Wang, Y., Zheng, Q.-C., Zhang, J.-L., Cui, Y.-L., Xue, Q., & Zhang, H.-X. (2013). Highlighting a π–π interaction: A protein modeling and molecular dynamics simulation study on Anopheles gambiae glutathione S-transferase 1-2. Journal of Molecular Modeling, 19, 5213–5223. doi:10.1007/s00894-013-2009-3
  • Weiser, J., Shenkin, P. S., & Still, W. C. (1999). Approximate atomic surfaces from linear combinations of pairwise overlaps (LCPO). Journal of Computational Chemistry, 20, 217–230. doi:10.1002/(SICI)1096-987X(19990130)20:2<217:AID-JCC4>3.0.CO;2-A

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.