188
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Targeting Holliday junctions by origin DNA-binding protein of herpes simplex virus type 1

, , , , &
Pages 704-723 | Received 26 Nov 2015, Accepted 01 Mar 2016, Published online: 25 May 2016

References

  • Andronova, V. L., Grokhovsky, S. L., Galegov, G. A., Deriabin, P. G., Gursky, G. V., & Lvov, D. K. (2010). Antiviral properties of the derivatives of netropsin and distamycin against herpes simplex virus type 1 and variolovaccine. Voprosy Virusologii (Russian), 55, 24–27.
  • Andronova, V. L., Grokhovsky, S. L., Surovaya, A. N., Arkhipova, V. S., Gursky, G. V., & Galegov, G. A. (2008). Antiviral and cytotoxic activity of netropsin derivatives in vero cells infected with vaccinia virus and herpes simplex virus type I. Doklady Biochemistry and Biophysics, 422, 688–693.
  • Andronova, V. L., Grokhovskii, S. L., Surovaya, A. N., Gurskii, G. V., & Galegov, G. A. (2001). Antiherpetic activity of dimeric derivatives of netropsin. Doklady Biochemistry and Biophysics, 380, 345–348.10.1023/A:1012300527936
  • Andronova, V. L., Grokhovsky, S. L., Surovaya, A. N., Gursky, G. V., & Galegov, G. A. (2007). Effect of dimeric derivatives of netropsin and their combinations with acyclovir on herpes simplex virus type 1 infection in mice. Doklady Biochemistry and Biophysics, 413, 830–834.
  • Andronova, V. L., Grokhovsky, S. L., Surovaya, A. N., Gursky, G. V., & Galegov, G. A. (2013). Estimation of the activities of bis-netropsin derivatives on a model of an experimental cutaneous herpes simplex disease of Guinea Pigs. Voprosi Virusologii (Russian), 58, 32–35.
  • Ariyoshi, M., Nishino, T., Iwasaki, H., Shinagawa, H., & Morikawa, K. (2000). Crystal structure of the Holliday junction DNA in complex with a single RuvA tetramer. Proceedings of the National Academy of Sciences of the USA, 97, 8257–8262.10.1073/pnas.140212997
  • Aslani, A., Macao, B., Simonsson, S., & Elias, P. (2001). Complementary intrastrand base pairing during initiation of Herpes simplex virus type 1 DNA replication. Proceedings of the National Academy of Sciences of the USA, 98, 7194–7199.10.1073/pnas.121177198
  • Aslani, A., Olsson, M., & Elias, P. (2002). ATP-dependent unwinding of a minimal origin of DNA replication by the origin-binding protein and the single-strand DNA-binding protein ICP8 from herpes simplex virus type I. Journal of Biological Chemistry, 277, 41204–41212.10.1074/jbc.M208270200
  • Assenberg, R., Weston, A., Cardy, D. N. L., & Fox, K. R. (2002). Sequence-dependent folding of DNA three-way junctions. Nucleic Acids Research, 30, 5142–5150.10.1093/nar/gkf637
  • Bazhulina, N. P., Surovaya, A. N., Gursky, Y. G., Andronova, V. L., Arkhipova, V. S., Golovkin, M. V., … Gursky, G. V. (2012). Inhibition of herpes simplex virus helicase UL9 by netropsin derivatives and antiviral activities of bis-netropsins. Biophysics, 57, 153–162.10.1134/S0006350912020042
  • Bazhulina, N. P., Surovaya, A. N., Gursky, Y. G., Andronova, V. L., Moiseeva, E. D., Nikitin, A. M., … Gursky, G. V. (2014). Complex of the herpes simplex virus type 1 origin binding protein UL9 with DNA as a platform for the design of a new type of antiviral drugs. Journal of Biomolecular Structure & Dynamics, 32, 1456–1473.
  • Belikov, S. V., Grokhovsky, S. L., Isaguliants, M. G., Surovaya, A. N., & Gursky, G. V. (2005). Sequence-specific minor groove binding ligands as potential regulators of gene expression in xenopus laevis oocytes. Journal of Biomolecular Structure & Dynamics, 23, 193–202.
  • Boehmer, P. E., Craigie, M. C., Stow, N. D., & Lehman, I. R. (1994). Association of origin binding protein and single strand DNA-binding protein, ICP8, during herpes simplex virus type 1 DNA replication in vivo. Journal of Biological Chemistry, 269, 29329–29334.
  • Boehmer, P. E., & Lehman, I. R. (1993). Herpes simplex virus type 1 ICP8: Helix-destabilizing properties. Journal of Virology, 67, 711–715.
  • Carter, A. S., Tahmaseb, K., Compton, S. A., & Matson, S. W. (2012). Resolving Holliday junctions with Escherichia coli UvrD helicase. Journal of Biological Chemistry, 287, 8126–8134.10.1074/jbc.M111.314047
  • Chattopadhyay, S., & Weller, S. K. (2007). Direct interaction between the N- and C-terminal portions of the herpes simplex virus type 1 origin binding protein UL9 implies the formation of a head-to-tail dimer. Journal of Virology, 81, 13659–13667.10.1128/JVI.01204-07
  • Clegg, R. G., Murchie, A. I. H., Zechel, A., Carlberg, C., Diekmann, S., & Lilley, D. M. J. (1992). Fluorescence resonance energy transfer analysis of the structure of the four-way DNA junction. Biochemistry, 31, 4846–4856.10.1021/bi00135a016
  • Doherty, A. J., Serpell, L. C., & Ponting, Ch. P. (1996). The helix–hairpin–helix DNA-binding motif: A structural basis for non-sequence-specific recognition of DNA. Nucleic Acids Research, 24, 2488–2497.10.1093/nar/24.13.2488
  • Duckett, D. R., Murchie, A. I. H., Diekmann, S., von Kitzing, E., Kemper, B., & Lilley, D. M. J. (1988). The structure of the Holliday junction, and its resolution. Cell, 55, 79–89.10.1016/0092-8674(88)90011-6
  • Eichman, B. F., Vargason, J. M., Mooers, B. H. M., & Ho, P. S. (2001). The Holliday junction in an inverted repeat DNA sequence: Sequence effects on the structure of four-way junctions. Proceedings of the National Academy of Sciences of the USA, 97, 3971–3976.
  • Eom, C. Y., & Lehman, I. R. (2002). The human DnaJ protein, hTid-1, enhances binding of a multimer of the herpes simplex virus type 1 UL9 protein to oris, an origin of viral DNA replication. Proceedings of the National Academy of Sciences of the USA, 99, 1894–1898.10.1073/pnas.042689499
  • Fierer, D. S., & Challberg, M. D. (1992). Purification and characterization of UL9, the herpes simplex virus type 1 origin-binding protein. Journal of Virology, 66, 3986–3995.
  • Förster, T. (1948). Intermolecular energy migration and fluorescence. Annalen der Physik, 2, 55–75.10.1002/(ISSN)1521-3889
  • George, H., Kuraoka, I., Nauman, D. A., Kobertz, W., Wood, R. D., & West, S. C. (2002). RuvAB-mediated branch migration does not involve extensive DNA opening within the RuvB hexamer. Current Biology, 10, 103–106.
  • Gopaul, D. N., Guo, F., & Van Duyne, G. D. (1998). Structure of the Holliday junction intermediate in Cre-loxP site-specific recombination. The EMBO Journal, 17, 4175–4187.10.1093/emboj/17.14.4175
  • Gourves, A.-S., Le Gael, N. T., Villanit, G., Boehmer, P. E., & Johnson, N. P. (2000). Equilibrium binding of single-stranded DNA with herpes simplex virus type I-coded single-stranded DNA-binding protein, ICP8. Journal of Biological Chemistry, 275, 10864–10869.10.1074/jbc.275.15.10864
  • Grainger, R. J., Murchie, A. I. H., & Lilley, D. M. J. (1998). Exchange between stacking conformers in a four-way DNA junction. Biochemistry, 37, 23–32.10.1021/bi9721492
  • Grokhovsky, S. L., Surovaya, A. N., Burckhardt, G., Pismensky, V. F., Chernov, B. K., Zimmer, C., & Gursky, G. V. (1998). DNA sequence recognition by bis-linked netropsin and distamycin derivatives. FEBS Letters, 439, 346–350.10.1016/S0014-5793(98)01379-9
  • Gursky, G. V., Zasedatelev, A. S., Zhuze, A. L., Khorlin, A. A., Grokhovsky, S. L., Streltsov, S. A., …Gottikh, B. P. (1983). Synthetic Sequence-specific ligands. Cold Spring Harbor Symposia on Quantitative Biology, 47, 367–378.10.1101/SQB.1983.047.01.043
  • Gustafsson, C. M., Hammarsten, O., Falkenberg, M., & Elias, P. (1994). Herpes simplex virus DNA replication: A spacer sequence directs the ATP dependent formation of a nucleoprotein complex at OriS. Proceedings of the National Academy of Sciences, 91, 4629–4633.
  • Hadden, J. M., Déclais, A. C., Carr, S. B., Lilley, D. M. J., & Phillips, S. E. (2007). The structural basis of Holliday junction resolution by T7 endonuclease I. Nature, 449, 621–624.10.1038/nature06158
  • Hays, F. A., Schirf, V., Ho, P Sh, & Demeler, B. (2006). Solution formation of Holliday junctions in inverted repeat DNA sequences. Biochemistry, 45, 2467–2471.10.1021/bi052129x
  • He, X., & Lehman, I. R. (2000). Unwinding of a herpes simplex virus type 1 origin of replication (OriS) by a complex of the viral origin binding protein and the single-stranded DNA binding protein. Journal of Virology, 74, 5726–5728.10.1128/JVI.74.12.5726-5728.2000
  • He, X., & Lehman, I. R. (2001). An initial ATP-independent step in the unwinding of a herpes simplex virus type I origin of replication by a complex of the viral origin-binding protein and single-strand DNA-binding protein. Proceedings of the National Academy of Sciences, 98, 3024–3028.10.1073/pnas.061028298
  • Ho, P. S., & Eichman, B. F. (2001). The crystal structures of DNA Holliday junctions. Current Opinion in Structural Biology, 11, 302–308.10.1016/S0959-440X(00)00219-0
  • Koff, A., Schwedes, J. F., & Tegtmeyer, P. J. (1991). Herpes simplex virus origin-binding protein (UL9) loops and distorts the viral replication origin. Journal of Virology, 65, 3284–3292.
  • Kvaratskhelia, M., George, S. J., Cooper, A., & White, M. F. (1999). Quantitation of metal ion and DNA junction binding to the Holliday junction endonuclease Cce I. Biochemistry, 38, 16613–16619.10.1021/bi9921788
  • Lee, S. S., & Lehman, I. R. (1997). Unwinding of the box I element of a herpes simplex virus type 1 origin by a complex of the viral origin binding protein, single-strand DNA binding protein, and single-stranded DNA. Proceedings of the National Academy of Sciences, 94, 2838–2842.10.1073/pnas.94.7.2838
  • Leontis, N. B., Hills, M. T., Piotto, M., Ouporov, I. P., Malhotra, A., & Gorenstein, D. G. (1994). Helical stacking in DNA three-way junctions containing two unpaired pyrimidines: proton NMR studies. Biophysical Journal, 68, 251–265.
  • Lilley, D. M. J. (2000). Structures of helical junctions in nucleic acids. Quarterly Reviews of Biophysics, 33, 109–159.10.1017/S0033583500003590
  • Lloyd, R. G., & Sharples, G. J. (1993). Processing of recombination intermediates by the RecG and RuvAB proteins of Escherichia coli. Nucleic Acids Research, 21, 1719–1725.10.1093/nar/21.8.1719
  • Macao, B., Olsson, M., & Elias, P. (2004). Functional Properties of the herpes simplex virus type I origin-binding protein are controlled by precise interactions with the activated form of the origin of DNA replication. Journal of Biological Chemistry, 279, 29211–29217.10.1074/jbc.M400371200
  • Mahdi, A. A., McGlynn, P., Levett, S. D., & Lloyd, R. G. (1997). DNA binding and helicase domains of the Escherichia coli recombination protein RecG. Nucleic Acids Research, 25, 3875–3880.10.1093/nar/25.19.3875
  • Makhov, A. M., Lee, S. S. K., Lehman, I. R., & Griffith, J. D. (2003). Origin-specific unwinding of herpes simplex virus 1 DNA by the viral UL9 and ICP8 proteins: Visualization of a specific preunwinding complex. Proceedings of the National Academy of Sciences, 100, 898–903.10.1073/pnas.0237171100
  • Malik, A. K., & Weller, S. K. (1996). Use of transdominant mutants of the origin-binding protein (UL9) of herpes simplex virus type 1 to define functional domains. Journal of Virology, 70, 7859–7866.
  • Manolaridis, I., Mumtsidu, E., Konarev, P., Makhov, A. M., Fullerton, S. W., Sinz, A., …Tucker, P. A. (2009). Structural and biophysical characterization of the proteins interacting with the herpes simplex virus 1 origin of replication. Journal of Biological Chemistry, 284, 16343–16353.10.1074/jbc.M806134200
  • Marras, S. A. E., Kramer, F. R., & Tyagi, S. (2002). Efficiencies of fluorescence resonance energy transfer and contact-mediated quenching in oligonucleotide probes. Nucleic Acids Research, 30, 122e.10.1093/nar/gnf121
  • McKinney, S. A., Déclais, A.-C., Lilley, D. M. J., & Ha, T. (2003). Structural dynamics of individual Holliday junctions. Nature Structural Biology, 10, 93–97.
  • Nikolaev, V. A., Grokhovsky, S. L., Surovaya, A. N., Leinsoo, T. A., Sidorova, N Yu, Zasedatelev, A. S., …Gursky, G. V. (1996). Design of sequence-specific DNA binding ligands that use a two-stranded peptide motif for DNA sequence recognition. Journal of Biomolecular Structure & Dynamics, 14, 31–47.
  • Nishino, T., Ariyoshi, M., Iwasaki, H., Shinagawa, H., & Morikawa, K. (1998). Functional analyses of the domain structure in the Holliday junction binding protein RuvA. Structure, 6, 11–21.10.1016/S0969-2126(98)00003-3
  • Olsson, M., Tang, Ka-W, Persson, C., Wilhelmsson, L. M., Billeter, M., & Elias, P. (2009). Stepwise evolution of the herpes simplex virus origin binding protein and origin of replication. Journal of Biological Chemistry, 284, 16246–16255.10.1074/jbc.M807551200
  • Ortiz-Lombardia, M., Gonzalez, A., Eritja, R., Aymami, J., Azorin, F., & Coll, M. (1999). Crystal structure of a DNA Holliday junction. Nature Structural Biology, 6, 913–917.
  • Overmars, F. J. J., & Altona, C. (1997). NMR study of the exchange rate between two stacked conformers of a model Holliday junction. Journal of Molecular Biology, 273, 519–524.10.1006/jmbi.1997.1340
  • Overmars, F. J. J., Lanzotti, V., Galeone, A., Pepe, A., Mayol, L., Pikkemaat, J. A., & Altona, C. (1997). Design and NMR study of an immobile DNA four-way junction containing 38 nucleotides. European Journal of Biochemistry, 249, 576–583.10.1111/ejb.1997.249.issue-2
  • Panyutin, I. G., Biswas, I., & Hsieh, P. (1995). A pivotal role for the structure of the Holliday junction in DNA branch migration. EMBO Journal, 14, 1819–1826.
  • Panyutin, I. G., & Hsieh, P. (1993). Formation of a single base mismatch impedes spontaneous DNA branch migration. Journal of Molecular Biology, 230, 413–424.10.1006/jmbi.1993.1159
  • Parsons, C. A., Tsaneva, I., Lloyd, R. G., & West, S. C. (1992). Interaction of Escherichia coli RuvA and RuvB proteins with synthetic Holliday junctions. Proceedings of the National Academy of Sciences, 89, 5452–5456.10.1073/pnas.89.12.5452
  • Parsons, C. A., & West, S. C. (1990). Specificity of binding to four-way junctions in DNA by bacteriophage T7 endonuclease I. Nucleic Acids Research, 18, 4377–4384.10.1093/nar/18.15.4377
  • Pohler, J. R. G., Norman, D. G., Bramham, J., Bianchi, M. E., & Lilley, D. M. J. (1998). HMG box proteins bind to four-way DNA junctions in their open conformation. The EMBO Journal, 17, 817–826.10.1093/emboj/17.3.817
  • Rafferty, J. B., Sedelnikova, S. E., Hargreaves, D., Artymiuk, P. J., Baker, P. J., Sharples, G. J., …Rice, D. W. (1996). Crystal structure of DNA recombination protein RuvA and a model for its binding to the Holliday junction. Science, 274, 415–421.10.1126/science.274.5286.415
  • Roe, S. M., Barlow, T., Brown, T., Oram, M., Keeley, A., Tsaneva, I. R., & Pearl, L. H. (1998). Crystal structure of an octameric RuvA–Holliday junction complex. Molecular Cell, 2, 361–372.10.1016/S1097-2765(00)80280-4
  • Sabir, T., Toulmin, A., Ma, L., Jones, A. C., McGlynn, P., Schröder, G., & Magennis, S. W. (2012). Branchpoint expansion in a fully complementary three-way DNA junction. Journal of the American Chemical Society, 134, 6280–6285.10.1021/ja211802z
  • Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular cloning: A laboratory manual. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press.
  • Shao, X., & Grishin, N. V. (2000). Common fold in helix-hairpin-helix proteins. Nucleic Acids Research, 28, 2643–2650.10.1093/nar/28.14.2643
  • Stow, N. D., Brown, G., Cross, A. M., & Abbotts, A. P. (1998). Identification of residues within the herpes simplex virus type 1 origin-binding protein that contribute to sequence-specific DNA binding. Virology, 240, 183–192.
  • Sun, W., Mao, C., Liu, F., & Seeman, N. C. (1998). Sequence dependence of branch migratory minima. Journal of Molecular Biology, 282, 59–70.10.1006/jmbi.1998.1991
  • Surovaya, A. N., Burckhardt, G., Grokhovsky, S. L., Birch-Hirschfeld, E., Gursky, G. V., & Zimmer, Ch (1997). Hairpin polyamides that use parallel and antiparallel side-by-side peptide motifs in binding to DNA. Journal of Biomolecular Structure and Dynamics, 14, 595–606.10.1080/07391102.1997.10508159
  • Surovaya, A. N., Burckhardt, G., Grokhovsky, S. L., Birch-Hirschfeld, E., Nikitin, A. M., Fritzsche, H., …Gursky, G. V. (2001). Binding of bis-linked netropsin derivatives in the parallel-stranded hairpin form to DNA. Journal of Biomolecular Structure and Dynamics, 18, 689–701.10.1080/07391102.2001.10506699
  • Surovaya, A. N., Grokhovskii, S. L., Bazhulina, N. P., & Gurskii, G. V. (2008). DNA-Binding activity of bis-netropsin containing a cis-diaminoplatinum group between two netropsin fragments. Biophysics, 53, 344–351.10.1134/S0006350908050047
  • Surovaya, A. N., Grokhovsky, S. L., Gurskiĭ, Ya. G., Andronova, V. L., Arkhipova, V. S., Bazhulina, N. P., …Gursky, G. V. (2010). Complex of the herpes simplex virus initiator protein UL9 with DNA as a platform for the design of a new type of antiviral drugs. Biophysics, 55, 206–216.
  • Tolun, G., Makhov, A. M., Ludtke, S. J., & Griffith, J. D. (2013). Details of ssDNA annealing revealed by an HSV-1 ICP8–ssDNA binary complex. Nucleic Acids Research, 41, 5927–5937.10.1093/nar/gkt266
  • Vitoc, C. I., & Mukerji, I. (2011). HU binding to a DNA four-way junction probed by Förster resonance energy transfer. Biochemistry, 50, 1432–1441.10.1021/bi1007589
  • Weir, H. M., & Stow, N. D. (1990). Two binding sites for the herpes simplex virus type 1 UL9 protein are required for efficient activity of the OriS replication origin. Journal of General Virology, 71, 1379–1385.10.1099/0022-1317-71-6-1379
  • Whitby, M. C., Bolt, E. L., Chan, S. N., & Lloyd, R. G. (1996). Interactions between RuvA and RuvC at Holliday junctions: Inhibition of junction cleavage and formation of a RuvA-RuvC-DNA complex. Journal of Molecular Biology, 264, 878–890.10.1006/jmbi.1996.0684
  • Whitby, M. C., & Lloyd, R. C. (1998). Targeting Holliday junctions by the RecG Branch migration protein of Escherichia coli. Journal of Biological Chemistry, 273, 19729–19739.10.1074/jbc.273.31.19729

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.