276
Views
10
CrossRef citations to date
0
Altmetric
Research Articles

Abundance and functional roles of intrinsic disorder in the antimicrobial peptides of the NK-lysin family

, , &
Pages 836-856 | Received 07 Feb 2016, Accepted 07 Mar 2016, Published online: 04 Apr 2016

References

  • Adkins, J. N., & Lumb, K. J. (2002). Intrinsic structural disorder and sequence features of the cell cycle inhibitor p57Kip2. Proteins: Structure, Function, and Genetics, 46(1), 1–7. doi:10.1002/prot.10018
  • Al-Ali, H., Rieger, M. E., Seldeen, K. L., Harris, T. K., Farooq, A., & Briegel, K. J. (2010). Biophysical characterization reveals structural disorder in the developmental transcriptional regulator LBH. Biochemical and Biophysical Research Communications, 391, 1104–1109. doi:10.1016/j.bbrc.2009.12.032
  • Anderson, D. H., Sawaya, M. R., Cascio, D., Ernst, W., Modlin, R., Krensky, A., & Eisenberg, D. (2003). Granulysin crystal structure and a structure-derived lytic mechanism. Journal of Molecular Biology, 325, 355–365. doi:10.1016/S0022-2836(02)01234-2
  • Anderson, M., Agerberth, B., & Gudmundsson, G. H. (1996). Cytotoxic T cells: More weapons for new targets? Trends in Microbiology, 4, 94–94. doi:10.1016/0966-842X(96)81522-8
  • Andersson, M., Gunne, H., Agerberth, B., Boman, A., Bergman, T., Sillard, R., … Gudmundsson, G. H. (1995). NK-lysin, a novel effector peptide of cytotoxic T and NK cells. Structure and cDNA cloning of the porcine form, induction by interleukin 2, antibacterial and antitumour activity. EMBO Journal, 14, 1615–1625. Retrieved from http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=7737114
  • Andersson, M., Gunne, H., Agerberth, B., Boman, A., Bergman, T., Olsson, B., … Gudmundsson, G. H. (1996). NK-lysin, structure and function of a novel effector molecule of porcine T and NK cells. Veterinary Immunology and Immunopathology, 54, 123–126. doi:10.1016/S0165-2427(96)05677-2
  • Andreu, D., Carreno, C., Linde, C., Boman, H. G., & Andersson, M. (1999). Identification of an anti-mycobacterial domain in NK-lysin and granulysin. Biochemical Journal, 344, 845–849. doi:10.1042/0264-6021:3440845
  • Barreiro, L. B., Tailleux, L., Pai, A. A., Gicquel, B., Marioni, J. C., & Gilad, Y. (2012). Deciphering the genetic architecture of variation in the immune response to Mycobacterium tuberculosis infection. Proceedings of the National Academy of Sciences of the United States of America, 109, 1204–1209. doi:10.1073/pnas.1115761109
  • Bruhn, H. (2005). A short guided tour through functional and structural features of saposin-like proteins. Biochemical Journal, 389, 249–257. doi:10.1042/Bj20050051
  • Campbell, K. M., Terrell, A. R., Laybourn, P. J., & Lumb, K. J. (2000). Intrinsic structural disorder of the C-terminal activation domain from the bZIP transcription factor Fos. Biochemistry, 39, 2708–2713. doi:10.1021/Bi9923555
  • Chang, B. S., Minn, A. J., Muchmore, S. W., Fesik, S. W., & Thompson, C. B. (1997). Identification of a novel regulatory domain in Bcl-xL and Bcl-2. The EMBO Journal, 16, 968–977. doi:10.1093/emboj/16.5.968
  • Chavez-Galan, L., Arenas-Del Angel, M. C., Zenteno, E., Chavez, R., & Lascurain, R. (2009). Cell death mechanisms induced by cytotoxic lymphocytes. Cellular and Molecular Immunology, 6, 15–25. doi:10.1038/cmi.2009.3
  • Cheng, Y., LeGall, T., Oldfield, C. J., Dunker, A. K., & Uversky, V. N. (2006). Abundance of intrinsic disorder in protein associated with cardiovascular disease. Biochemistry, 45, 10448–10460. doi:10.1021/bi060981d
  • Cheng, Y. G., Oldfield, C. J., Meng, J. W., Romero, P., Uversky, V. N., & Dunker, A. K. (2007). Mining alpha-helix-forming molecular recognition features with cross species sequence alignments. Biochemistry, 46, 13468–13477. doi:10.1021/bi7012273
  • Conlon, J. M. (2015). Host-defense peptides of the skin with therapeutic potential: From hagfish to human. Peptides, 67, 29–38. doi:10.1016/j.peptides.2015.03.005
  • Conlon, J. M., Mechkarska, M., Lukic, M. L., & Flatt, P. R. (2014). Potential therapeutic applications of multifunctional host-defense peptides from frog skin as anti-cancer, anti-viral, immunomodulatory, and anti-diabetic agents. Peptides, 57, 67–77. doi:10.1016/j.peptides.2014.04.019
  • Cuperus, T., Coorens, M., van Dijk, A., & Haagsman, H. P. (2013). Avian host defense peptides. Developmental & Comparative Immunology, 41, 352–369. doi:10.1016/j.dci.2013.04.019
  • Daughdrill, G. W., Pielak, G. J., Uversky, V. N., Cortese, M. S., & Dunker, A. K. (2005). Natively disordered proteins. In J. Buchner & T. Kiefhaber (Eds.), Handbook of protein folding (pp. 271–353). Weinheim: Wiley-VCH, Verlag GmbH &.
  • de Groot, N. S., & Ventura, S. (2010). Protein aggregation profile of the bacterial cytosol. PLoS One, 5, e9383. doi:10.1371/journal.pone.0009383
  • Disfani, F. M., Hsu, W. L., Mizianty, M. J., Oldfield, C. J., Xue, B., Dunker, A. K., … Kurgan, L. (2012). MoRFpred, a computational tool for sequence-based prediction and characterization of short disorder-to-order transitioning binding regions in proteins. Bioinformatics, 28, i75–i83. doi:10.1093/bioinformatics/bts209
  • Dosztanyi, Z., Csizmok, V., Tompa, P., & Simon, I. (2005). IUPred: Web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics, 21, 3433–3434. doi:10.1093/bioinformatics/bti541
  • Dosztanyi, Z., Chen, J., Dunker, A. K., Simon, I., & Tompa, P. (2006). Disorder and sequence repeats in hub proteins and their implications for network evolution. Journal of Proteome Research, 5, 2985–2995. doi:10.1021/pr060171o
  • Dosztanyi, Z., Meszaros, B., & Simon, I. (2009). ANCHOR: Web server for predicting protein binding regions in disordered proteins. Bioinformatics, 25, 2745–2746. doi:10.1093/bioinformatics/btp518
  • Dunker, A. K., & Obradovic, Z. (2001). The protein trinity – linking function and disorder. Nature Biotechnology, 19, 805–806. doi:10.1038/Nbt0901-805
  • Dunker, A. K., & Uversky, V. N. (2008). Signal transduction via unstructured protein conduits. Nature Chemical Biology, 4, 229–230. doi:10.1038/nchembio0408-229
  • Dunker, A. K., Garner, E., Guilliot, S., Romero, P., Albrecht, K., Hart, J., … Villafranca, J. E. (1998). Protein disorder and the evolution of molecular recognition: Theory, predictions and observations. Pacific Symposium on Biocomputing, 473–484. Retrieved from http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9697205
  • Dunker, A. K., Obradovic, Z., Romero, P., Garner, E. C., & Brown, C. J. (2000). Intrinsic protein disorder in complete genomes. Genome Informatics Ser Workshop on Genome Informatics, 11, 161–171. Retrieved from http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11700597
  • Dunker, A. K., Lawson, J. D., Brown, C. J., Williams, R. M., Romero, P., Oh, J. S., … Obradovic, Z. (2001). Intrinsically disordered protein. Journal of Molecular Graphics and Modelling, 19, 26–59. doi:10.1016/S1093-3263(00)00138-8
  • Dunker, A. K., Brown, C. J., Lawson, J. D., Iakoucheva, L. M., & Obradovic, Z. (2002). Intrinsic disorder and protein function. Biochemistry, 41, 6573–6582. doi:10.1021/bi012159+
  • Dunker, A. K., Brown, C. J., & Obradovic, Z. (2002). Identification and functions of usefully disordered proteins. Advances in Protein Chemistry, 62, 25–49. doi:10.1016/s0065-3233(02)62004-2
  • Dunker, A. K., Cortese, M. S., Romero, P., Iakoucheva, L. M., & Uversky, V. N. (2005). Flexible nets. The roles of intrinsic disorder in protein interaction networks. FEBS Journal, 272, 5129–5148. doi:10.1111/j.1742-4658.2005.04948.x
  • Dunker, A. K., Silman, I., Uversky, V. N., & Sussman, J. L. (2008). Function and structure of inherently disordered proteins. Current Opinion in Structural Biology, 18, 756–764. doi:10.1016/j.sbi.2008.10.002
  • Dyson, H. J., & Wright, P. E. (2002). Coupling of folding and binding for unstructured proteins. Current Opinion in Structural Biology, 12, 54–60. doi:10.1016/S0959-440X(02)00289-0
  • Dyson, H. J., & Wright, P. E. (2005). Intrinsically unstructured proteins and their functions. Nature Reviews Molecular Cell Biology, 6, 197–208. doi:10.1038/nrm1589
  • Eichacker, L. A., Granvogl, B., Mirus, O., Muller, B. C., Miess, C., & Schleiff, E. (2004). Hiding behind hydrophobicity. Transmembrane segments in mass spectrometry. Journal of Biological Chemistry, 279, 50915–50922. doi:10.1074/jbc.M405875200
  • Endsley, J. J., Furrer, J. L., Endsley, M. A., McIntosh, M. A., Maue, A. C., Waters, W. R., … Estes, D. M. (2004). Characterization of bovine homologues of granulysin and NK-lysin. The Journal of Immunology, 173, 2607–2614. doi:10.4049/jimmunol.173.4.2607
  • Erkizan, H. V., Uversky, V. N., & Toretsky, J. A. (2010). Oncogenic partnerships: EWS-FLI1 protein interactions initiate key pathways of Ewing’s sarcoma. Clinical Cancer Research, 16, 4077–4083. doi:10.1158/1078-0432.CCR-09-2261
  • Ernst, W. A., Thoma-Uszynski, S., Teitelbaum, R., Ko, C., Hanson, D. A., Clayberger, C., … Modlin, R. L. (2000). Granulysin, a T cell product, kills bacteria by altering membrane permeability. The Journal of Immunology, 165, 7102–7108. doi:10.4049/jimmunol.165.12.7102
  • Fan, X., & Kurgan, L. (2014). Accurate prediction of disorder in protein chains with a comprehensive and empirically designed consensus. Journal of Biomolecular Structure and Dynamics, 32, 448–464. doi:10.1080/07391102.2013.775969
  • Gansert, J. L., Kiessler, V., Engele, M., Wittke, F., Rollinghoff, M., Krensky, A. M., … Stenger, S. (2003). Human NKT cells express granulysin and exhibit antimycobacterial activity. The Journal of Immunology, 170, 3154–3161. doi:10.4049/jimmunol.170.6.3154
  • Garcia-Camacho, L., Schat, K. A., Brooks, R., & Bounous, D. (2003). Early cell-mediated immune responses to Marek’s disease virus in two chicken lines with defined major histocompatibility complex antigens. Veterinary Immunology and Immunopathology, 95, 145–153. doi:10.1016/S0165-2427(03)00140-5
  • Ghosh, R. P., Nikitina, T., Horowitz-Scherer, R. A., Gierasch, L. M., Uversky, V. N., Hite, K., … Woodcock, C. L. (2010). Unique physical properties and interactions of the domains of methylated DNA binding protein 2. Biochemistry, 49, 4395–4410. doi:10.1021/bi9019753
  • Habchi, J., Tompa, P., Longhi, S., & Uversky, V. N. (2014). Introducing protein intrinsic disorder. Chemical Reviews, 114, 6561–6588. doi:10.1021/cr400514h
  • Hasenstein, J. R., & Lamont, S. J. (2007). Chicken gallinacin gene cluster associated with salmonella response in advanced intercross line. Avian Diseases, 51, 561–567. doi:10.1637/0005-2086(2007)51[561:Cggcaw]2.0.Co;2
  • Hata, A., Zerboni, L., Sommer, M., Kaspar, A. A., Clayberger, C., Krensky, A. M., & Arvin, A. M. (2001). Granulysin blocks replication of varicella-zoster virus and triggers apoptosis of infected cells. Viral Immunology, 14, 125–133. doi:10.1089/088282401750234501
  • Haynes, C., Oldfield, C. J., Ji, F., Klitgord, N., Cusick, M. E., Radivojac, P., … Iakoucheva, L. M. (2006). Intrinsic disorder is a common feature of hub proteins from four eukaryotic interactomes. PLoS Computational Biology, 2, e100. doi:10.1371/journal.pcbi.0020100
  • Hegyi, H., Buday, L., & Tompa, P. (2009). Intrinsic structural disorder confers cellular viability on oncogenic fusion proteins. PLoS Computational Biology, 5, e1000552. doi:10.1371/journal.pcbi.1000552.
  • Heller, E. D., & Schat, K. A. (1987). Enhancement of natural killer cell activity by Marek’s disease vaccines. Avian Pathology, 16, 51–60. doi:10.1080/03079458708436352
  • Hippler, M., Klein, J., Fink, A., Allinger, T., & Hoerth, P. (2001). Towards functional proteomics of membrane protein complexes: Analysis of thylakoid membranes from Chlamydomonas reinhardtii. The Plant Journal, 28, 595–606. doi:10.1046/j.1365-313X.2001.01175.x
  • Homchaudhuri, L., De Avila, M., Nilsson, S. B., Bessonov, K., Smith, G. S. T., Bamm, V. V., … Boggs, J. M. (2010). Secondary structure and solvent accessibility of a calmodulin-binding C-terminal segment of membrane-associated myelin basic protein. Biochemistry, 49, 8955–8966. doi:10.1021/bi100988p
  • Hong, Y. H., Lellehoj, H. S., Dalloul, R. A., Min, W. G., Miska, K. B., Tuo, W. B., … Lillehoj, E. P. (2006). Molecular cloning and characterization of chicken NK-lysin. Veterinary Immunology and Immunopathology, 110, 339–347. doi:10.1016/j.vetimm.2005.11.002
  • Hong, Y. H., Lillehoj, H. S., Siragusa, G. R., Bannerman, D. D., & Lillehoj, E. P. (2008). Antimicrobial activity of chicken NK-lysin against eimeria sporozoites. Avian Diseases, 52, 302–305. doi:10.1637/8083-072307-Resnote.1
  • Houchins, J. P., Kricek, F., Chujor, C. S., Heise, C. P., Yabe, T., McSherry, C., & Bach, F. H. (1993). Genomic structure of NKG5, a human NK and T cell-specific activation gene. Immunogenetics, 37, 102–107. doi:10.1007/BF00216832
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14, 33–38, 27–38. doi:10.1016/0263-7855(96)00018-5
  • Iakoucheva, L. M., Brown, C. J., Lawson, J. D., Obradovic, Z., & Dunker, A. K. (2002). Intrinsic disorder in cell-signaling and cancer-associated proteins. Journal of Molecular Biology, 323, 573–584. doi:10.1016/S0022-2836(02)00969-5
  • Iakoucheva, L. M., Radivojac, P., Brown, C. J., O’Connor, T. R., Sikes, J. G., Obradovic, Z., & Dunker, A. K. (2004). The importance of intrinsic disorder for protein phosphorylation. Nucleic Acids Research, 32, 1037–1049. doi:10.1093/nar/gkh253
  • Ishida, T., & Kinoshita, K. (2007). PrDOS: Prediction of disordered protein regions from amino acid sequence. Nucleic Acids Research, 35(Web server issue), W460–W464. doi:10.1093/nar/gkm363
  • Jacobs, T., Bruhn, H., Gaworski, I., Fleischer, B., & Leippe, M. (2003). NK-lysin and its shortened analog NK-2 exhibit potent activities against Trypanosoma cruzi. Antimicrobial Agents and Chemotherapy, 47, 607–613. doi:10.1128/Aac.47.2.607-613.2003
  • Jakob, U., Kriwacki, R., & Uversky, V. N. (2014). Conditionally and transiently disordered proteins: Awakening cryptic disorder to regulate protein function. Chemical Reviews, 114, 6779–6805. doi:10.1021/cr400459c
  • John, M., Wendeler, M., Heller, M., Sandhoff, K., & Kessler, H. (2006). Characterization of human saposins by NMR spectroscopy. Biochemistry, 45, 5206–5216. doi:10.1021/bi051944+
  • Kaufman, J. (2000). The simple chicken major histocompatibility complex: Life and death in the face of pathogens and vaccines. Philosophical Transactions of the Royal Society B: Biological Sciences, 355, 1077–1084. doi:10.1098/rstb.2000.0645
  • Krensky, A. M., & Clayberger, C. (2009). Biology and clinical relevance of granulysin. Tissue Antigens, 73, 193–198. doi:10.1111/j.1399-0039.2008.01218.x
  • Kyte, J., & Doolittle, R. F. (1982). A simple method for displaying the hydropathic character of a protein. Journal of Molecular Biology, 157, 105–132. doi:10.1016/0022-2836(82)90515-0
  • Lee, H., Mok, K. H., Muhandiram, R., Park, K. H., Suk, J. E., Kim, D. H., … Han, K. H. (2000). Local structural elements in the mostly unstructured transcriptional activation domain of human p53. Journal of Biological Chemistry, 275, 29426–29432. doi:10.1074/jbc.M003107200
  • Lee, M. O., Kim, E. H., Jang, H. J., Park, M. N., Woo, H. J., Han, J. Y., & Womack, J. E. (2012). Effects of a single nucleotide polymorphism in the chicken NK-lysin gene on antimicrobial activity and cytotoxicity of cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 109, 12087–12092. doi:10.1073/pnas.1209161109
  • Liepinsh, E., Andersson, M., Ruysschaert, J. M., & Otting, G. (1997). Saposin fold revealed by the NMR structure of NK-lysin. Natural Structural Biology, 4, 793–795. doi:10.1038/nsb1097-793
  • Linde, C. M. A., Grundstrom, S., Nordling, E., Refai, E., Brennan, P. J., & Andersson, M. (2005). Conserved structure and function in the granulysin and NK-lysin peptide family. Infection and Immunity, 73, 6332–6339. doi:10.1128/Iai.73.10.6332-6339.2005
  • Lo, J. C., & Lange, D. (2015). Current and potential applications of host-defense peptides and proteins in urology. BioMed Research International, 2015, 189016. doi:10.1155/2015/189016
  • Lyu, W., Curtis, A. R., Sunkara, L. T., & Zhang, G. (2015). Transcriptional regulation of antimicrobial host defense peptides. Current Protein & Peptide Science, 16, 672–679. doi:10.2174/1389203716666150630133432
  • Ma, B. G., Guo, J. X., & Zhang, H. Y. (2006). Direct correlation between proteins’ folding rates and their amino acid compositions: An ab initio folding rate prediction. Proteins: Structure, Function, and Bioinformatics, 65, 362–372. doi:10.1002/prot.21140
  • Ma, B. G., Chen, L. L., & Zhang, H. Y. (2007). What determines protein folding type? An investigation of intrinsic structural properties and its implications for understanding folding mechanisms. Journal of Molecular Biology, 370, 439–448. doi:10.1016/j.jmb.2007.04.051
  • Malaney, P., Pathak, R. R., Xue, B., Uversky, V. N., & Dave, V. (2013). Intrinsic disorder in PTEN and its interactome confers structural plasticity and functional versatility. Scientific Reports, 3, 2035. doi:10.1038/Srep02035
  • Mandelkow, E. M., Schweers, O., Drewes, G., Biernat, J., Gustke, N., Trinczek, B., & Mandelkow, E. (1996). Structure, microtubule interactions, and phosphorylation of tau protein. Annals of the New York Academy of Sciences, 777, 96–106. doi:10.1016/0197-4580(90)90667-o
  • Mark, W. Y., Liao, J. C., Lu, Y., Ayed, A., Laister, R., Szymczyna, B., … Arrowsmith, C. H. (2005). Characterization of segments from the central region of BRCA1: An intrinsically disordered scaffold for multiple protein–protein and protein–DNA interactions? Journal of Molecular Biology, 345, 275–287. doi:10.1016/j.jmb.2004.10.045
  • Mattar, E. H., Almehdar, H. A., Yacoub, H. A., Uversky, V. N., & Redwan, E. M. (2015). Antimicrobial potentials and structural disorder of human and animal defensins. Cytokine & Growth Factor Reviews. doi:10.1016/j.cytogfr.2015.11.002
  • Meszaros, B., Simon, I., & Dosztanyi, Z. (2009). Prediction of protein binding regions in disordered proteins. PLoS Computational Biology, 5, e1000376. doi:10.1371/journal.pcbi.1000376
  • Mohan, A., Oldfield, C. J., Radivojac, P., Vacic, V., Cortese, M. S., Dunker, A. K., & Uversky, V. N. (2006). Analysis of molecular recognition features (MoRFs). Journal of Molecular Biology, 362, 1043–1059. doi:10.1016/j.jmb.2006.07.087
  • Mohan, A., Sullivan, W. J., Radivojac, P., Dunker, A. K., & Uversky, V. N. (2008). Intrinsic disorder in pathogenic and non-pathogenic microbes: Discovering and analyzing the unfoldomes of early-branching eukaryotes. Molecular BioSystems, 4, 328–340. doi:10.1039/b719168e
  • Munford, R. S., Sheppard, P. O., & O’Hara, P. J. (1995). Saposin-like proteins (SAPLIP) carry out diverse functions on a common backbone structure. The Journal of Lipid Research, 36, 1653–1663. Retrieved from http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=7595087
  • Narayanan, R. L., Durr, U. H. N., Bibow, S., Biernat, J., Mandelkow, E., & Zweckstetter, M. (2010). Automatic assignment of the intrinsically disordered protein tau with 441-residues. Journal of the American Chemical Society, 132, 11906–11907. doi:10.1021/ja105657f
  • Oates, M. E., Romero, P., Ishida, T., Ghalwash, M., Mizianty, M. J., Xue, B., … Gough, J. (2013). D2P2: Database of disordered protein predictions. Nucleic Acids Research, 41(Database issue), D508–D516. doi:10.1093/nar/gks1226
  • Obradovic, Z., Peng, K., Vucetic, S., Radivojac, P., & Dunker, A. K. (2005). Exploiting heterogeneous sequence properties improves prediction of protein disorder. Proteins: Structure, Function, and Bioinformatics, 61(Suppl 7), 176–182. doi:10.1002/prot.20735
  • Oldfield, C. J., Cheng, Y., Cortese, M. S., Brown, C. J., Uversky, V. N., & Dunker, A. K. (2005). Comparing and combining predictors of mostly disordered proteins. Biochemistry, 44, 1989–2000. doi:10.1021/bi047993o
  • Oldfield, C. J., Cheng, Y., Cortese, M. S., Romero, P., Uversky, V. N., & Dunker, A. K. (2005). Coupled folding and binding with alpha-helix-forming molecular recognition elements. Biochemistry, 44, 12454–12470. doi:10.1021/bi050736e
  • Oldfield, C. J., Meng, J., Yang, J. Y., Yang, M. Q., Uversky, V. N., & Dunker, A. K. (2008). Flexible nets: Disorder and induced fit in the associations of p53 and 14-3-3 with their partners. BMC Genomics, 9(Suppl 1), S1. doi:10.1186/1471-2164-9-S1-S1
  • Olmeda, B., Garcia-Alvarez, B., & Perez-Gil, J. (2013). Structure-function correlations of pulmonary surfactant protein SP-B and the saposin-like family of proteins. European Biophysics Journal, 42, 209–222. doi:10.1007/s00249-012-0858-9
  • Pancsa, R., & Tompa, P. (2012). Structural disorder in eukaryotes. PLoS One, 7, e34687. doi:10.1371/journal.pone.0034687
  • Pankratz, V. S., Vierkant, R. A., O’Byrne, M. M., Ovsyannikova, I. G., & Poland, G. A. (2010). Associations between SNPs in candidate immune-relevant genes and rubella antibody levels: A multigenic assessment. BMC Immunology, 11, 48. doi:10.1186/1471-2172-11-48
  • Pejaver, V., Hsu, W. L., Xin, F., Dunker, A. K., Uversky, V. N., & Radivojac, P. (2014). The structural and functional signatures of proteins that undergo multiple events of post-translational modification. Protein Science, 23, 1077–1093. doi:10.1002/pro.2494
  • Pena, S. V., & Krensky, A. M. (1997). Granulysin, a new human cytolytic granule-associated protein with possible involvement in cell-mediated cytotoxicity. Seminars in Immunology, 9, 117–125. doi:10.1006/smim.1997.0061
  • Pena, S. V., Hanson, D. A., Carr, B. A., Goralski, T. J., & Krensky, A. M. (1997). Processing, subcellular localization, and function of 519 (granulysin), a human late T cell activation molecule with homology to small, lytic, granule proteins. Journal of Immunology, 158, 2680–2688. Retrieved from <Go to ISI>://A1997WM43500023
  • Peng, Z. L., & Kurgan, L. (2012). Comprehensive comparative assessment of in-silico predictors of disordered regions. Current Protein & Peptide Science, 13, 6–18. doi:10.2174/138920312799277938
  • Peng, K., Vucetic, S., Radivojac, P., Brown, C. J., Dunker, A. K., & Obradovic, Z. (2005). Optimizing long intrinsic disorder predictors with protein evolutionary information. Journal of Bioinformatics and Computational Biology, 3, 35–60. doi:10.1142/s0219720005000886
  • Peng, K., Radivojac, P., Vucetic, S., Dunker, A. K., & Obradovic, Z. (2006). Length-dependent prediction of protein intrinsic disorder. BMC Bioinformatics, 7, 208. doi:10.1186/1471-2105/7/208.
  • Peng, Z., Mizianty, M. J., & Kurgan, L. (2014). Genome-scale prediction of proteins with long intrinsically disordered regions. Proteins: Structure, Function, and Bioinformatics, 82, 145–158. doi:10.1002/prot.24348
  • Peng, Z., Yan, J., Fan, X., Mizianty, M. J., Xue, B., Wang, K., … Kurgan, L. (2015). Exceptionally abundant exceptions: Comprehensive characterization of intrinsic disorder in all domains of life. Cellular and Molecular Life Sciences, 72, 137–151. doi:10.1007/s00018-014-1661-9
  • Prilusky, J., Felder, C. E., Zeev-Ben-Mordehai, T., Rydberg, E. H., Man, O., Beckmann, J. S., … Sussman, J. L. (2005). FoldIndex: A simple tool to predict whether a given protein sequence is intrinsically unfolded. Bioinformatics, 21, 3435–3438. doi:10.1093/bioinformatics/bti537
  • Radivojac, P., Iakoucheva, L. M., Oldfield, C. J., Obradovic, Z., Uversky, V. N., & Dunker, A. K. (2007). Intrinsic disorder and functional proteomics. Biophysical Journal, 92, 1439–1456. doi:10.1529/biophysj.106.094045
  • Ramamoorthy, A., Thennarasu, S., Tan, A. M., Lee, D. K., Clayberger, C., & Krensky, A. M. (2006). Cell selectivity correlates with membrane-specific interactions: A case study on the antimicrobial peptide G15 derived from granulysin. Biochimica et Biophysica Acta-Biomembranes, 1758, 154–163. doi:10.1016/j.bbamem.2006.02.014
  • Romero, P., Obradovic, Z., Li, X., Garner, E. C., Brown, C. J., & Dunker, A. K. (2001). Sequence complexity of disordered protein. Proteins: Structure, Function, and Genetics, 42, 38–48. doi:10.1002/1097-0134(20010101)42:1<38:AID-PROT50>3.0.CO;2-3
  • Ruysschaert, J. M., Goormaghtigh, E., Homble, F., Andersson, M., Liepinsh, E., & Otting, G. (1998). Lipid membrane binding of NK-lysin. FEBS Letters, 425, 341–344. doi:10.1016/S0014-5793(98)00261-0
  • Santoni, V., Rabilloud, T., Doumas, P., Rouquie, D., Mansion, M., Kieffer, S., … Rossignol, M. (1999). Towards the recovery of hydrophobic proteins on two-dimensional electrophoresis gels. Electrophoresis, 20, 705–711. doi:10.1002/(SICI)1522-2683(19990101)20:4/5<705:AID-ELPS705>3.0.CO;2-Q
  • Santoni, V., Kieffer, S., Desclaux, D., Masson, F., & Rabilloud, T. (2000). Membrane proteomics: Use of additive main effects with multiplicative interaction model to classify plasma membrane proteins according to their solubility and electrophoretic properties. Electrophoresis, 21, 3329–3344. doi:10.1002/1522-2683(20001001)21:16<3329:AID-ELPS3329>3.0.CO;2-F
  • Sarson, A. J., Abdul-Careem, M. F., Read, L. R., Brisbin, J. T., & Sharif, S. (2008). Expression of cytotoxicity-associated genes in Marek’s disease virus-infected chickens. Viral Immunology, 21, 267–272. doi:10.1089/vim.2007.0094
  • Schad, E., Tompa, P., & Hegyi, H. (2011). The relationship between proteome size, structural disorder and organism complexity. Genome Biology, 12, R120. doi:10.1186/Gb-2011-12-12-R120
  • Schat, K. A. (1996). Immunity to Marek’s disease, lymphoid leukosis and reticuloendotheliosis. In F. Davison, L. N. Payne, & T. R. Morris (Eds.), Poultry immunology (pp. 209–233). Abingdon: Carfax Publishing Company.
  • Schat, K. A., & Markowski-Grimsrud, C. J. (2001). Immune responses to Marek’s disease virus infection. Marek’s Disease, 255, 91–120. doi:10.1007/978-3-642-56863-3_4
  • Schat, K. A., & Xing, Z. (2000). Specific and nonspecific immune responses to Marek’s disease virus. Developmental and Comparative Immunology, 24, 201–221. doi:10.1016/S0145-305x(99)00073-7
  • Schroder-Borm, H., Bakalova, R., & Andra, J. (2005). The NK-lysin derived peptide NK-2 preferentially kills cancer cells with increased surface levels of negatively charged phosphatidylserine. FEBS Letters, 579, 6128–6134. doi:10.1016/j.febslet.2005.09.084
  • Seabury, C. M., Seabury, P. M., Decker, J. E., Schnabel, R. D., Taylor, J. F., & Womack, J. E. (2010). Diversity and evolution of 11 innate immune genes in Bos taurus taurus and Bos taurus indicus cattle. Proceedings of the National Academy of Sciences of the United States of America, 107, 151–156. doi:10.1073/pnas.0913006107
  • Shatsky, M., Nussinov, R., & Wolfson, H. J. (2004). A method for simultaneous alignment of multiple protein structures. Proteins: Structure, Function, and Bioinformatics, 56, 143–156. doi:10.1002/prot.10628
  • Sickmeier, M., Hamilton, J. A., LeGall, T., Vacic, V., Cortese, M. S., Tantos, A., … Dunker, A. K. (2007). DisProt: The database of disordered proteins. Nucleic Acids Research, 35(Database issue), D786–D793. doi:10.1093/nar/gkl893
  • Stenger, S., Hanson, D. A., Teitelbaum, R., Dewan, P., Niazi, K. R., Froelich, C. J., … Modlin, R. L. (1998). An antimicrobial activity of cytolytic T cells mediated by granulysin. Science, 282, 121–125. doi:10.1126/science.282.5386.121
  • Sugiarto, H., & Yu, P. L. (2004). Avian antimicrobial peptides: The defense role of β-defensins. Biochemical and Biophysical Research Communications, 323, 721–727. doi:10.1016/j.bbrc.2004.08.162
  • Szklarczyk, D., Franceschini, A., Kuhn, M., Simonovic, M., Roth, A., Minguez, P., … von Mering, C. (2011). The STRING database in 2011: Functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Research, 39(Database issue), D561–D568. doi:10.1093/nar/gkq973
  • Tantos, A., Han, K. H., & Tompa, P. (2012). Intrinsic disorder in cell signaling and gene transcription. Molecular and Cellular Endocrinology, 348, 457–465. doi:10.1016/j.mce.2011.07.015
  • Tompa, P. (2002). Intrinsically unstructured proteins. Trends in Biochemical Sciences, 27, 527–533. doi:10.1016/s0968-0004(02)02169-2
  • Tompa, P. (2003). The functional benefits of protein disorder. Journal of Molecular Structure: THEOCHEM, 666, 361–371. doi:10.1016/j.theochem.2003.08.047
  • Tompa, P. (2005). The interplay between structure and function in intrinsically unstructured proteins. FEBS Letters, 579, 3346–3354. doi:10.1016/j.febslet.2005.03.072
  • Tompa, P. (2012). Intrinsically disordered proteins: a 10-year recap. Trends in Biochemical Sciences, 37, 509–516. doi:10.1016/j.tibs.2012.08.004
  • Tompa, P., Szasz, C., & Buday, L. (2005). Structural disorder throws new light on moonlighting. Trends in Biochemical Sciences, 30, 484–489. doi:10.1016/j.tibs.2005.07.008
  • Tompa, P., Fuxreiter, M., Oldfield, C. J., Simon, I., Dunker, A. K., & Uversky, V. N. (2009). Close encounters of the third kind: Disordered domains and the interactions of proteins. BioEssays, 31, 328–335. doi:10.1002/bies.200800151
  • Tompa, P., Schad, E., Tantos, A., & Kalmar, L. (2015). Intrinsically disordered proteins: Emerging interaction specialists. Current Opinion in Structural Biology, 35, 49–59. doi:10.1016/j.sbi.2015.08.009
  • Tschopp, J., & Hofmann, K. (1996). Cytotoxic T cells: More weapons for new targets? Trends in Microbiology, 4, 91–95. doi:10.1016/0966-842x(96)81522-8
  • Turoverov, K. K., Kuznetsova, I. M., & Uversky, V. N. (2010). The protein kingdom extended: Ordered and intrinsically disordered proteins, their folding, supramolecular complex formation, and aggregation. Progress in Biophysics and Molecular Biology, 102, 73–84. doi:10.1016/j.pbiomolbio.2010.01.003
  • UniProt Consortium. (2015). UniProt: A hub for protein information. Nucleic Acids Res, 43(Database issue), D204–D212. doi:10.1093/nar/gku989
  • Uversky, V. N. (2002a). Natively unfolded proteins: A point where biology waits for physics. Protein Science, 11, 739–756. doi:10.1110/ps.4210102
  • Uversky, V. N. (2002b). What does it mean to be natively unfolded? European Journal of Biochemistry, 269, 2–12. doi:10.1046/j.0014-2956.2001.02649.x
  • Uversky, V. N. (2003). Protein folding revisited. A polypeptide chain at the folding-misfolding-nonfolding cross-roads: Which way to go? Cellular and Molecular Life Sciences (CMLS), 60, 1852–1871. doi:10.1007/s00018-003-3096-6
  • Uversky, V. N. (2010a). The mysterious unfoldome: Structureless, underappreciated, yet vital part of any given proteome. Journal of Biomedicine and Biotechnology, 2010, 568068. doi:10.1155/2010/568068
  • Uversky, V. N. (2010b). Targeting intrinsically disordered proteins in neurodegenerative and protein dysfunction diseases: Another illustration of the D(2) concept. Expert Review of Proteomics, 7, 543–564. doi:10.1586/epr.10.36
  • Uversky, V. N. (2011). Multitude of binding modes attainable by intrinsically disordered proteins: A portrait gallery of disorder-based complexes. Chemical Society Reviews, 40, 1623–1634. doi:10.1039/c0cs00057d
  • Uversky, V. N. (2012). Disordered competitive recruiter: Fast and foldable. Journal of Molecular Biology, 418, 267–268. doi:10.1016/j.jmb.2012.02.034
  • Uversky, V. N. (2013a). Intrinsic disorder-based protein interactions and their modulators. Current Pharmaceutical Design, 19, 4191–4213. doi:10.2174/1381612811319230005
  • Uversky, V. N. (2013b). Unusual biophysics of intrinsically disordered proteins. Biochimica et Biophysica Acta (BBA) – Proteins and Proteomics, 1834, 932–951. doi:10.1016/j.bbapap.2012.12.008
  • Uversky, V. N. (2014a). The triple power of D(3): Protein intrinsic disorder in degenerative diseases. Frontiers in Bioscience (Landmark Ed), 19, 181–258. doi:10.2741/4204
  • Uversky, V. N. (2014b). Wrecked regulation of intrinsically disordered proteins in diseases: Pathogenicity of deregulated regulators. Frontiers in Molecular Biosciences, 1, 6. doi:10.3389/fmolb.2014.00006
  • Uversky, V. N. (2015a). Functional roles of transiently and intrinsically disordered regions within proteins. FEBS Journal, 282, 1182–1189. doi:10.1111/febs.13202
  • Uversky, V. N. (2015b). The multifaceted roles of intrinsic disorder in protein complexes. FEBS Letters, 589(19 PtA), 2498–2506. doi:10.1016/j.febslet.2015.06.004
  • Uversky, V. N., & Dunker, A. K. (2010). Understanding protein non-folding. Biochimica et Biophysica Acta (BBA) – Proteins and Proteomics, 1804, 1231–1264. doi:10.1016/j.bbapap.2010.01.017
  • Uversky, V. N., Gillespie, J. R., & Fink, A. L. (2000). Why are “natively unfolded” proteins unstructured under physiologic conditions? Proteins: Structure, Function, and Genetics, 41, 415–427. doi:10.1002/1097-0134(20001115)41:3<415:aid-prot130>3.3.co;2-z
  • Uversky, V. N., Li, J., & Fink, A. L. (2001). Evidence for a partially folded intermediate in alpha-synuclein fibril formation. Journal of Biological Chemistry, 276, 10737–10744. doi:10.1074/jbc.M010907200
  • Uversky, V. N., Oldfield, C. J., & Dunker, A. K. (2005). Showing your ID: Intrinsic disorder as an ID for recognition, regulation and cell signaling. Journal of Molecular Recognition, 18, 343–384. doi:10.1002/jmr.747
  • Uversky, V. N., Roman, A., Oldfield, C. J., & Dunker, A. K. (2006). Protein intrinsic disorder and human papillomaviruses: Increased amount of disorder in E6 and E7 Oncoproteins from high risk HPVs. Journal of Proteome Research, 5, 1829–1842. doi:10.1021/pr0602388
  • Uversky, V. N., Oldfield, C. J., & Dunker, A. K. (2008). Intrinsically disordered proteins in human diseases: Introducing the D2 concept. Annual Review of Biophysics, 37, 215–246. doi:10.1146/annurev.biophys.37.032807.125924
  • Uversky, V. N., Dave, V., Iakoucheva, L. M., Malaney, P., Metallo, S. J., Pathak, R. R., & Joerger, A. C. (2014). Pathological unfoldomics of uncontrolled chaos: Intrinsically disordered proteins and human diseases. Chemical Reviews, 114, 6844–6879. doi:10.1021/cr400713r
  • Vaccaro, A. M., Salvioli, R., Tatti, M., & Ciaffoni, F. (1999). Saposins and their interaction with lipids. Neurochemical Research, 24, 307–314. Retrieved from http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=997288010.1023/A:1022530508763
  • Vacic, V., Oldfield, C. J., Mohan, A., Radivojac, P., Cortese, M. S., Uversky, V. N., & Dunker, A. K. (2007). Characterization of molecular recognition features, MoRFs, and their binding partners. Journal of Proteome Research, 6, 2351–2366. doi:10.1021/pr0701411
  • Vacic, V., Uversky, V. N., Dunker, A. K., & Lonardi, S. (2007). Composition Profiler: A tool for discovery and visualization of amino acid composition differences. BMC Bioinformatics, 8, 211. doi:10.1186/1471-2105-8-211
  • van der Lee, R., Buljan, M., Lang, B., Weatheritt, R. J., Daughdrill, G. W., Dunker, A. K., … Babu, M. M. (2014). Classification of intrinsically disordered regions and proteins. Chemical Reviews, 114, 6589–6631. doi:10.1021/cr400525m
  • Vucetic, S., Obradovic, Z., Vacic, V., Radivojac, P., Peng, K., Iakoucheva, L. M., … Dunker, A. K. (2005). DisProt: A database of protein disorder. Bioinformatics, 21, 137–140. doi:10.1093/bioinformatics/bth476
  • Walsh, I., Martin, A. J., Di Domenico, T., & Tosatto, S. C. (2012). ESpritz: Accurate and fast prediction of protein disorder. Bioinformatics, 28, 503–509. doi:10.1093/bioinformatics/btr682
  • Wang, Z., Choice, E., Kaspar, A., Hanson, D., Okada, S., Lyu, S. C., … Clayberger, C. (2000). Bactericidal and tumoricidal activities of synthetic peptides derived from granulysin. The Journal of Immunology, 165, 1486–1490. doi:10.4049/jimmunol.165.3.1486
  • Wang, Q., Wang, Y., Xu, P., & Liu, Z. (2006). NK-lysin of channel catfish: Gene triplication, sequence variation, and expression analysis. Molecular Immunology, 43, 1676–1686. doi:10.1016/j.molimm.2005.09.023
  • Wang, G., Mishra, B., Lau, K., Lushnikova, T., Golla, R., & Wang, X. (2015). Antimicrobial peptides in 2014. Pharmaceuticals, 8, 123–150. doi:10.3390/ph8010123
  • Ward, J. J., Sodhi, J. S., McGuffin, L. J., Buxton, B. F., & Jones, D. T. (2004a). Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. Journal of Molecular Biology, 337, 635–645. doi:10.1016/j.jmb.2004.02.002
  • Ward, J. J., Sodhi, J. S., McGuffin, L. J., Buxton, B. F., & Jones, D. T. (2004b). Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. Journal of Molecular Biology, 337, 635–645. doi:10.1016/j.jmb.2004.02.002
  • Weinreb, P. H., Zhen, W., Poon, A. W., Conway, K. A., & Lansbury, P. T., Jr. (1996). NACP, a protein implicated in Alzheimer’s disease and learning, is natively unfolded. Biochemistry, 35, 13709–13715. doi:10.1021/bi961799n
  • Wolff, S., Hahne, H., Hecker, M., & Becher, D. (2008). Complementary analysis of the vegetative membrane proteome of the human pathogen Staphylococcus aureus. Molecular & Cellular Proteomics, 7, 1460–1468. doi:10.1074/mcp.M700554-MCP200
  • Wright, P. E., & Dyson, H. J. (1999). Intrinsically unstructured proteins: Re-assessing the protein structure-function paradigm. Journal of Molecular Biology, 293, 321–331. doi:10.1006/jmbi.1999.3110
  • Xue, B., Dunker, A. K., & Uversky, V. N. (2012). Orderly order in protein intrinsic disorder distribution: Disorder in 3500 proteomes from viruses and the three domains of life. Journal of Biomolecular Structure & Dynamics, 30, 137–149. doi:10.1080/07391102.2012.675145
  • Xue, B., & Uversky, V. N. (2014). Intrinsic disorder in proteins involved in the innate antiviral immunity: Another flexible side of a molecular arms race. Journal of Molecular Biology, 426, 1322–1350. doi:10.1016/j.jmb.2013.10.030
  • Xue, B., Williams, R. W., Oldfield, C. J., Goh, G. K. M., Dunker, A. K., & Uversky, V. N. (2010). Viral disorder or disordered viruses: Do viral proteins possess unique features? Protein and Peptide Letters, 17, 932–951. doi:10.1002/9781118135570.ch1
  • Yacoub, H. A., Elazzazy, A. M., Abuzinadah, O. A., Al-Hejin, A. M., Mahmoud, M. M., & Harakeh, S. M. (2015). Antimicrobial activities of chicken beta-defensin (4 and 10) peptides against pathogenic bacteria and fungi. Frontiers in Cellular and Infection Microbiology, 5, 36. doi:10.3389/fcimb.2015.00036
  • Yang, C. H., van der Woerd, M. J., Muthurajan, U. M., Hansen, J. C., & Luger, K. (2011). Biophysical analysis and small-angle X-ray scattering-derived structures of MeCP2-nucleosome complexes. Nucleic Acids Research, 39, 4122–4135. doi:10.1093/nar/gkr005
  • Zasloff, M. (2002). Antimicrobial peptides of multicellular organisms. Nature, 415, 389–395. doi:10.1038/415389a
  • Zhang, G. L., Ross, C. R., & Blecha, F. (2000). Porcine antimicrobial peptides: New prospects for ancient molecules of host defense. Veterinary Research, 31, 277–296. doi:10.1051/vetres:2000121
  • Zitvogel, L., & Kroemer, G. (2010). The multifaceted granulysin. Blood, 116, 3379–3380. doi:10.1182/blood-2010-08-299214

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.