414
Views
26
CrossRef citations to date
0
Altmetric
Research Articles

Effects of osmolytes on solvent features of water in aqueous solutions

, , , &
Pages 1055-1068 | Received 24 Feb 2016, Accepted 22 Mar 2016, Published online: 19 Apr 2016

References

  • Ab Rani, M. A. , Brant, A. , Crowhurst, L. , Dolan, A. , Lui, M. , & Hassan, N. H. (2011). Understanding the polarity of ionic liquids. Physical Chemistry Chemical Physics , 13 , 16831–16840. doi:10.1039/C1cp21262a
  • Amid, M. , Murshid, F. S. , Manap, M. Y. , & Hussin, M. (2015). A novel aqueous micellar two-phase system composed of surfactant and sorbitol for purification of pectinase enzyme from Psidium guajava and recycling phase components. BioMed Research International , 2015 , Article ID: 815413, 8 p. doi:10.1155/2015/815413
  • Athawale, M. V. , Dordick, J. S. , & Garde, S. (2005). Osmolyte trimethylamine-N-oxide does not affect the strength of hydrophobic interactions: Origin of osmolyte compatibility. Biophysical Journal , 89 , 858–866. doi:10.1529/biophysj.104.056671
  • Batchelor, J. D. , Olteanu, A. , Tripathy, A. , & Pielak, G. J. (2004). Impact of protein denaturants and stabilizers on water structure. Journal of the American Chemical Society , 126 , 1958–1961. doi:10.1021/ja039335h
  • Bolen, D. W. , & Baskakov, I. V. (2001). The osmophobic effect: Natural selection of a thermodynamic force in protein folding. Journal of Molecular Biology , 310 , 955–963. doi:10.1006/jmbi.2001.4819
  • Bolen, D. W. , & Rose, G. D. (2008). Structure and energetics of the hydrogen-bonded backbone in protein folding. Annual Review of Biochemistry , 77 , 339–362. doi:10.1146/annurev.biochem.77.061306.131357
  • Bruździak, P. , Adamczak, B. , Kaczkowska, E. , Czub, J. , & Stangret, J. (2015). Are stabilizing osmolytes preferentially excluded from the protein surface? FTIR and MD studies. Physical Chemistry Chemical Physics , 17 , 23155–23164. doi:10.1039/c5cp03065j
  • Bruździak, P. , Panuszko, A. , & Stangret, J. (2013). Influence of osmolytes on protein and water structure: A step to understanding the mechanism of protein stabilization. The Journal of Physical Chemistry B , 117 , 11502–11508. doi:10.1021/Jp404780c
  • Canchi, D. R. , & García, A. E. (2013). Cosolvent effects on protein stability. Annual Review of Physical Chemistry , 64 , 273–293. doi:10.1146/annurev-physchem-040412-110156
  • Cho, S. S. , Reddy, G. , Straub, J. E. , & Thirumalai, D. (2011). Entropic stabilization of proteins by TMAO. The Journal of Physical Chemistry B , 115 , 13401–13407. doi:10.1021/jp207289b
  • Choudhary, S. , & Kishore, N. (2011). Thermodynamics of the interactions of a homologous series of some amino acids with trimethylamine N-oxide: Volumetric, compressibility, and calorimetric studies. The Journal of Chemical Thermodynamics , 43 , 1541–1551. doi:10.1016/j.jct.2011.05.012
  • Choudhary, S. , & Kishore, N. (2014). Addressing mechanism of fibrillization/aggregation and its prevention in presence of osmolytes: Spectroscopic and calorimetric approach. PLoS ONE , 9 , e104600. doi:10.1371/journal.pone.0104600
  • Daggett, V. (2006). Protein folding−simulation. Chemical Reviews , 106 , 1898–1916. doi:10.1021/Cr0404242
  • Docoslis, A. , Giese, R. F. , & van Oss, C. J. (2000). Influence of the water–air interface on the apparent surface tension of aqueous solutions of hydrophilic solutes. Colloids and Surfaces B: Biointerfaces , 19 , 147–162. doi:10.1016/S0927-7765(00)00137-5
  • Elcock, A. H. (2010). Models of macromolecular crowding effects and the need for quantitative comparisons with experiment. Current Opinion in Structural Biology , 20 , 196–206. doi:10.1016/j.sbi.2010.01.008
  • Ferreira, L. A. , Madeira, P. P. , Breydo, L. , Reichardt, C. , Uversky, V. N. , & Zaslavsky, B. Y. (2016). Role of solvent properties of aqueous media in macromolecular crowding effects. Journal of Biomolecular Structure and Dynamics , 34 , 92–103. doi:10.1080/07391102.2015.1011235
  • Ferreira, L. A. , Povarova, O. I. , Stepanenko, O. V. , Sulatskaya, A. I. , Madeira, P. P. , & Kuznetsova, I. M. (2016). Effects of low urea concentrations on protein–water interactions. Journal of Biomolecular Structure and Dynamics , 1–33, doi:10.1080/07391102.2015.1135823
  • Ferreira, L. , Madeira, P. P. , Uversky, V. N. , & Zaslavsky, B. Y. (2015). Analyzing the effects of protecting osmolytes on solute-water interactions by solvatochromic comparison method: I. Small organic compounds. RSC Advances , 5 , 59812–59822. doi:10.1039/C5RA08610H
  • Gekko, K. (1981). Mechanism of polyol-induced protein stabilization: Solubility of amino acids and diglycine in aqueous polyol solutions. Journal of Biochemistry , 90 , 1633–1641.
  • Heyden, M. , Bründermann, E. , Heugen, U. , Niehues, G. , Leitner, D. M. , & Havenith, M. (2008). Long-range influence of carbohydrates on the solvation dynamics of water – answers from terahertz absorption measurements and molecular modeling simulations. Journal of the American Chemical Society , 130 , 5773–5779. doi:10.1021/ja0781083
  • Hilaire, M. R. , Abaskharon, R. M. , & Gai, F. (2015). Biomolecular crowding arising from small molecules, molecular constraints, surface packing, and nano-confinement. The Journal of Physical Chemistry Letters , 6 , 2546–2553. doi:10.1021/acs.jpclett.5b00957
  • Jain, R. , Sharma, D. , Kumar, S. , & Kumar, R. (2014). Factor defining the effects of glycine betaine on the thermodynamic stability and internal dynamics of horse cytochrome C. Biochemistry , 53 , 5221–5235. doi:10.1021/bi500356c
  • Kamlet, M. J. , Abboud, J. L. , & Taft, R. W. (1977). Solvatochromic comparison method. 6. Pi-Star scale of solvent polarities. Journal of the American Chemical Society , 99 , 6027–6038. doi:10.1021/Ja00460a031
  • Kamlet, M. J. , & Taft, R. W. (1976). Solvatochromic comparison method. 1. Beta-scale of solvent hydrogen-bond acceptor (HBA) basicities. Journal of the American Chemical Society , 98 , 377–383. doi:10.1021/Ja00418a009
  • Karino, Y. , & Matubayasi, N. (2013). Interaction-component analysis of the urea effect on amino acid analogs. Physical Chemistry Chemical Physics , 15 , 4377–4391. doi:10.1039/c3cp43346c
  • Lakshmi, T. S. , & Nandi, P. K. (1976). Effects of sugar solutions on the activity coefficients of aromatic amino acids and their N-acetyl ethyl esters. The Journal of Physical Chemistry , 80 , 249–252. doi:10.1021/j100544a008
  • Larini, L. , & Shea, J. E. (2013a). Double resolution model for studying TMAO/water effective interactions. The Journal of Physical Chemistry B , 117 , 13268–13277. doi:10.1021/jp403635g
  • Larini, L. , & Shea, J. E. (2013b). Double resolution model for studying TMAO/water effective interactions. The Journal of Physical Chemistry B , 117 , 13268–13277. doi:10.1021/Jp403635g
  • Linhananta, A. , Hadizadeh, S. , & Plotkin, S. S. (2011). An effective solvent theory connecting the underlying mechanisms of osmolytes and denaturants for protein stability. Biophysical Journal , 100 , 459–468. doi:10.1016/j.bpj.2010.11.087
  • Ma, J. Q. , Pazos, I. M. , & Gai, F. (2014). Microscopic insights into the protein-stabilizing effect of trimethylamine N-oxide (TMAO). Proceedings of the National Academy of Sciences , 111 , 8476–8481. doi:10.1073/pnas.1403224111
  • Magazù, S. , Migliardo, F. , & Telling, M. T. (2007). Study of the dynamical properties of water in disaccharide solutions. European Biophysics Journal , 36 , 163–171. doi:10.1007/s00249-006-0108-0
  • Malmberg, C. G. , & Maryott, A. A. (1950). Dielectric constants of aqueous solutions of dextrose and sucrose. Journal of Research of the National Bureau of Standards , 45 , 299–303. doi:10.6028/jres.045.030
  • Marcus, Y. (1993). The properties of organic liquids that are relevant to their use as solvating solvents. Chemical Society Reviews , 22 , 409–416. doi:10.1039/Cs9932200409
  • Meersman, F. , Bowron, D. , Soper, A. K. , & Koch, M. H. (2009). Counteraction of urea by trimethylamine N-oxide is due to direct interaction. Biophysical Journal , 97 , 2559–2566. doi:10.1016/j.bpj.2009.08.017
  • Miyawaki, O. , Dozen, M. , & Nomura, K. (2014). Thermodynamic analysis of osmolyte effect on thermal stability of ribonuclease A in terms of water activity. Biophysical Chemistry , 185 , 19–24. doi:10.1016/j.bpc.2013.10.004
  • Nakano, S. , Miyoshi, D. , & Sugimoto, N. (2014). Effects of molecular crowding on the structures, interactions, and functions of nucleic acids. Chemical Reviews , 114 , 2733–2758. doi:10.1021/cr400113m
  • Nozaki, Y. , & Tanford, C. (1963). The solubility of amino acids and related compounds in aqueous urea solutions. Journal of Biological Chemistry , 238 , 4074–4081.
  • Pałecz, B. (2004). The enthalpies of interactions of some L-α-amino acids with urea molecule in aqueous solutions at 298.15 K. Amino Acids , 27 , 299–303. doi:10.1007/s00726-004-0132-2
  • Palecz, B. (2005). Enthalpic pair interaction coefficient between zwitterions of l -α-amino acids and urea molecule as a hydrophobicity parameter of amino acid side chains. Journal of the American Chemical Society , 127 , 17768–17771. doi:10.1021/ja054407l
  • Paul, S. , & Patey, G. N. (2007). Structure and interaction in aqueous urea−trimethylamine-N-oxide solutions. Journal of the American Chemical Society , 129 , 4476–4482. doi:10.1021/Ja0685506
  • Phillip, Y. , & Schreiber, G. (2013). Formation of protein complexes in crowded environments – From in vitro to in vivo. FEBS Letters , 587 , 1046–1052. doi:10.1016/j.febslet.2013.01.007
  • Platts, L. , & Falconer, R. J. (2015). Controlling protein stability: Mechanisms revealed using formulations of arginine, glycine and guanidinium HCl with three globular proteins. International Journal of Pharmaceutics , 486 , 131–135. doi:10.1016/j.ijpharm.2015.03.051
  • Politi, R. , Sapir, L. , & Harries, D. (2009). The impact of polyols on water structure in solution: A computational study. The Journal of Physical Chemistry A , 113 , 7548–7555. doi:10.1021/jp9010026
  • Reichardt, C. , Harbusch-Görnert, E. , & SchWäfer, G. (1988). Über Pyridinium-N-phenolat-Betaine und ihre Verwendung zur Charakterisierung der Polarität von Lösungsmitteln, XI. Herstellung und UV/VIS-spektroskopische Eigenschaften eines wasserlöslichen Carboxylat-substituierten Pyridinium-Nphenolat-Betainfarbstoffs [About pyridinium-N- phenoxide betaines and their use to characterize the polarity of solvents. XI. Preparation and UV/VIS spectroscopic properties of a water-soluble carboxylate-substituted pyridinium N-phenoxide betaine dye]. Liebigs Annalen der Chemie , 8 , 839–844.10.1002/(ISSN)1099-0690
  • Rodríguez-Ropero, F. , & van der Vegt, N. F. (2014). Direct osmolyte–macromolecule interactions confer entropic stability to folded states. The Journal of Physical Chemistry B , 118 , 7327–7334. doi:10.1021/jp504065e
  • Sagle, L. B. , Cimatu, K. , Litosh, V. A. , Liu, Y. , Flores, S. C. , & Chen, X. (2011). Methyl groups of trimethylamine N-oxide orient away from hydrophobic interfaces. Journal of the American Chemical Society , 133 , 18707–18712. doi:10.1021/Ja205106e
  • Sajadi, M. , Ajaj, Y. , Ioffe, I. , Weingärtner, H. , & Ernsting, N. P. (2010). Terahertz absorption spectroscopy of a liquid using a polarity probe: A case study of trehalose/water mixtures. Angewandte Chemie International Edition , 49 , 454–457. doi:10.1002/anie.200904997
  • Schellman, J. A. (2003). Protein stability in mixed solvents: A balance of contact interaction and excluded volume. Biophysical Journal , 85 , 108–125. doi:10.1016/S0006-3495(03)74459-2
  • Schellman, J. A. (2005). Destabilization and stabilization of proteins. Quarterly Reviews of Biophysics , 38 , 351–361. doi:10.1017/S0033583505004099
  • Sharp, K. A. (2015). Analysis of the size dependence of macromolecular crowding shows that smaller is better. Proceedings of the National Academy of Sciences , 112 , 7990–7995. doi:10.1073/pnas.1505396112
  • Sharp, K. A. , Madan, B. , Manas, E. , & Vanderkooi, J. M. (2001). Water structure changes induced by hydrophobic and polar solutes revealed by simulations and infrared spectroscopy. The Journal of Chemical Physics , 114 , 1791–1796. doi:10.1063/1.1334678
  • Shek, Y. L. , & Chalikian, T. V. (2013). Interactions of glycine betaine with proteins: Insights from volume and compressibility measurements. Biochemistry , 52 , 672–680. doi:10.1021/bi301554h
  • Singh, L. R. , Poddar, N. K. , Dar, T. A. , Kumar, R. , & Ahmad, F. (2011). Protein and DNA destabilization by osmolytes: The other side of the coin. Life Sciences , 88 , 117–125. doi:10.1016/j.lfs.2010.10.020
  • Stumpe, M. C. , & Grubmüller, H. (2007). Interaction of urea with amino acids: Implications for urea-induced protein denaturation. Journal of the American Chemical Society , 129 , 16126–16131. doi:10.1021/ja076216j
  • Taft, R. W. , & Kamlet, M. J. (1976). Solvatochromic comparison method. 2. Alpha-scale of solvent hydrogen-bond donor (HBD) acidities. Journal of the American Chemical Society , 98 , 2886–2894. doi:10.1021/Ja00426a036
  • Yalkowsky, S. H. (1999). Solubility and solubilization in aqueous media . Washington, DC: American Chemical Society.
  • Yamada, M. , Fukusako, S. , Kawanami, T. , Sawada, I. , & Horibe, A. (1997). Surface tension of aqueous binary solutions. International Journal of Thermophysics , 18 , 1483–1493. doi:10.1007/BF02575346
  • Yancey, P. H. (2005). Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. Journal of Experimental Biology , 208 , 2819–2830. doi:10.1242/jeb.01730
  • Yancey, P. H. , & Siebenaller, J. F. (2015). Co-evolution of proteins and solutions: Protein adaptation versus cytoprotective micromolecules and their roles in marine organisms. Journal of Experimental Biology , 218 , 1880–1896. doi:10.1242/jeb.114355
  • Zhou, H. X. , Rivas, G. , & Minton, A. P. (2008). Macromolecular crowding and confinement: Biochemical, biophysical, and potential physiological consequences. Annual Review of Biophysics , 37 , 375–397. doi:10.1146/annurev.biophys.37.032807.125817

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.