358
Views
15
CrossRef citations to date
0
Altmetric
Research Articles

Characterization of RNA-binding properties of the archaeal Hfq-like protein from Methanococcus jannaschii

, , , , &
Pages 1615-1628 | Received 11 Mar 2016, Accepted 11 May 2016, Published online: 01 Aug 2016

References

  • Adams, P. D., Afonine, P. V., Bunkóczi, G., Chen, V. B., Davis, I. W., Echols, N., … Zwart, P. H. (2010). PHENIX: A comprehensive python-based system for macromolecular structure solution. Acta Crystallographica. Section D, Biological Crystallography, 66, 213–221. doi:10.1107/S0907444909052925
  • Babski, J., Maier, L.-K., Heyer, R., Jaschinski, K., Prasse, D., Jäger, D., … Soppa, J. (2014). Small regulatory RNAs in archaea. RNA Biology, 11, 484–493. doi:10.4161/rna.28452
  • Brennan, R. G., & Link, T. M. (2007). Hfq structure, function and ligand binding. Current Opinion in Microbiology, 10, 125–133. doi:10.1016/j.mib.2007.03.015
  • Brinkmann, U., Mattes, R. E., & Buckel, P. (1989). High-level expression of recombinant genes in Escherichia coli is dependent on the availability of the dnaY gene product. Gene, 85, 109–114. doi:10.1016/0378-1119(89)90470-8
  • De Lay, N., Schu, D. J., & Gottesman, S. (2013). Bacterial small RNA-based negative regulation: Hfq and its accomplices. Journal of Biological Chemistry, 288, 7996–8003. doi:10.1074/jbc.R112.441386
  • Debreczeni, J. É., & Emsley, P. (2012). Handling ligands with Coot. Acta Crystallographica Section D Biological Crystallography, 68, 425–430. doi:10.1107/S0907444912000200
  • Dimastrogiovanni, D., Fröhlich, K. S., Bandyra, K. J., Bruce, H. A., Hohensee, S., Vogel, J., & Luisi, B. F. (2014). Recognition of the small regulatory RNA RydC by the bacterial Hfq protein. eLife, 3, e05375. doi:10.7554/eLife.05375
  • Emsley, P., & Cowtan, K. (2004). Coot: Model-building tools for molecular graphics. Acta Crystallographica. Section D, Biological Crystallography, 60, 2126–2132. doi:10.1107/S0907444904019158
  • Emsley, P., Lohkamp, B., Scott, W. G., & Cowtan, K. (2010). Features and development of Coot. Acta Crystallographica. Section D, Biological Crystallography, 66, 486–501. doi:10.1107/S0907444910007493
  • Fischer, S., Benz, J., Spath, B., Maier, L.-K., Straub, J., Granzow, M., … Marchfelder, A. (2010). The archaeal Lsm protein binds to small RNAs. Journal of Biological Chemistry, 285, 34429–34438. doi:10.1074/jbc.M110.118950
  • Gottle, M., Dove, S., Steindel, P., Shen, Y., Tang, W.-J., Geduhn, J., … Seifert, R. (2007). Molecular analysis of the interaction of Bordetella pertussis adenylyl cyclase with fluorescent nucleotides. Molecular Pharmacology, 72, 526–535. doi:10.1124/mol.107.034413
  • Hämmerle, H., Beich-Frandsen, M., Večerek, B., Rajkowitsch, L., Carugo, O., Djinović-Carugo, K., & Bläsi, U. (2012). Structural and biochemical studies on ATP binding and hydrolysis by the Escherichia coli RNA chaperone Hfq. PLoS ONE, 7, e50892. doi:10.1371/journal.pone.0050892
  • Horstmann, N., Orans, J., Valentin-Hansen, P., Shelburne, S. A., & Brennan, R. G. (2012). Structural mechanism of Staphylococcus aureus Hfq binding to an RNA A-tract. Nucleic Acids Research, 40, 11023–11035. doi:10.1093/nar/gks809
  • Hou, L., Klug, G., & Evguenieva-Hackenberg, E. (2014). Archaeal DnaG contains a conserved N-terminal RNA-binding domain and enables tailing of rRNA by the exosome. Nucleic Acids Research, 42, 12691–12706. doi:10.1093/nar/gku969
  • Hulme, E. C., & Trevethick, M. A. (2010). Ligand binding assays at equilibrium: Validation and interpretation. British Journal of Pharmacology, 161, 1219–1237. doi:10.1111/j.1476-5381.2009.00604.x
  • Kabsch, W. (2010). Integration, scaling, space-group assignment and post-refinement. Acta Crystallographica. Section D, Biological Crystallography, 66, 133–144. doi:10.1107/S0907444909047374
  • Katsamba, P. S., Park, S., & Laird-Offringa, I. A. (2002). Kinetic studies of RNA-protein interactions using surface plasmon resonance. Methods, 26, 95–104. doi:10.1016/S1046-2023(02)00012-9
  • Koonin, E. V., Wolf, Y. I., & Aravind, L. (2001). Prediction of the archaeal exosome and its connections with the proteasome and the translation and transcription machineries by a comparative-genomic approach. Genome Research, 11, 240–252. doi:10.1101/gr.162001
  • Kovach, A. R., Hoff, K. E., Canty, J. T., Orans, J., & Brennan, R. G. (2014). Recognition of U-rich RNA by Hfq from the gram-positive pathogen Listeria monocytogenes. RNA, 20, 1548–1559. doi:10.1261/rna.044032.113
  • Lease, R. A., & Woodson, S. A. (2004). Cycling of the Sm-like protein Hfq on the DsrA small regulatory RNA. Journal of Molecular Biology, 344, 1211–1223. doi:10.1016/j.jmb.2004.10.006
  • Leung, A. K. W., Nagai, K., & Li, J. (2011). Structure of the spliceosomal U4 snRNP core domain and its implication for snRNP biogenesis. Nature, 473, 536–539. doi:10.1038/nature09956
  • Link, T. M., Valentin-Hansen, P., & Brennan, R. G. (2009). Structure of Escherichia coli Hfq bound to polyriboadenylate RNA. Proceedings of the National Academy of Sciences, 106, 19292–19297. doi:10.1073/pnas.0908744106
  • Małecka, E. M., Stróżecka, J., Sobańska, D., & Olejniczak, M. (2015). Structure of bacterial regulatory RNAs determines their performance in competition for the chaperone protein Hfq. Biochemistry, 54, 1157–1170. doi:10.1021/bi500741d
  • McCoy, A. J., Grosse-Kunstleve, R. W., Adams, P. D., Winn, M. D., Storoni, L. C., & Read, R. J. (2007). Phaser crystallographic software. Journal of Applied Crystallography, 40, 658–674. doi:10.1107/S0021889807021206
  • Meister, G. (2002). SMN-mediated assembly of RNPs: A complex story. Trends in Cell Biology, 12, 472–478. doi:10.1016/S0962-8924(02)02371-1
  • Mikulecky, P. J., Kaw, M. K., Brescia, C. C., Takach, J. C., Sledjeski, D. D., & Feig, A. L. (2004). Escherichia coli Hfq has distinct interaction surfaces for DsrA, rpoS and poly(A) RNAs. Nature Structural & Molecular Biology, 11, 1206–1214. doi:10.1038/nsmb858
  • Mohanty, B. K., & Kushner, S. R. (2011). Bacterial/archaeal/organellar polyadenylation. Wiley Interdisciplinary Reviews: RNA, 2, 256–276. doi:10.1002/wrna.51
  • Møller, T., Franch, T., Højrup, P., Keene, D. R., Bächinger, H. P., Brennan, R. G., & Valentin-Hansen, P. (2002). Hfq: A bacterial Sm-like protein that mediates RNA–RNA interaction. Molecular Cell, 9, 23–30. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/1180458310.1016/S1097-2765(01)00436-1
  • Morton, T. A., & Myszka, D. G. (1998). Kinetic analysis of macromolecular interactions using surface plasmon resonance biosensors. Methods in Enzymology, 295, 268–294. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/975022310.1016/S0076-6879(98)95044-3
  • Moskaleva, O., Melnik, B., Gabdulkhakov, A., Garber, M., Nikonov, S., Stolboushkina, E., & Nikulin, A. (2010). The structures of mutant forms of Hfq from Pseudomonas aeruginosa reveal the importance of the conserved His57 for the protein hexamer organization. Acta Crystallographica Section F Structural Biology and Crystallization Communications, 66, 760–764. doi:10.1107/S1744309110017331
  • Mura, C., Randolph, P. S., Patterson, J., & Cozen, A. E. (2013). Archaeal and eukaryotic homologs of Hfq. RNA Biology, 10, 636–651.10.4161/rna.24538
  • Murina, V. N., & Nikulin, A. D. (2011). RNA-binding Sm-like proteins of bacteria and archaea. Similarity and difference in structure and function. Biochemistry, 76, 1434–1449. doi:10.1134/S0006297911130050
  • Murina, V., Lekontseva, N., & Nikulin, A. (2013). Hfq binds ribonucleotides in three different RNA-binding sites. Acta Crystallographica. Section D, Biological Crystallography, 69, 1504–1513. doi:10.1107/S090744491301010X
  • Murina, V. N., Melnik, B. S., Filimonov, V. V., Ühlein, M., Weiss, M. S., Müller, U., & Nikulin, A. D. (2014). Effect of conserved intersubunit amino acid substitutions on Hfq protein structure and stability. Biochemistry, 79, 469–477. doi:10.1134/S0006297914050113
  • Murina, V. N., Selivanova, O. M., Mikhaylina, A. O., Kazakov, A. S., Nikonova, E. Y., Lekontseva, N. V., … Nikulin, A. D. (2015). Supramolecular organization of Hfq-like proteins. Biochemistry, 80, 441–448. doi:10.1134/S0006297915040070
  • Myszka, D. G., & Morton, T. A. (1998). CLAMP©: A biosensor kinetic data analysis program. Trends in Biochemical Sciences, 23, 149–150. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/958461910.1016/S0968-0004(98)01183-9
  • Nielsen, J. S., Boggild, A., Andersen, C. B. F., Nielsen, G., Boysen, A., Brodersen, D. E., & Valentin-Hansen, P. (2007). An Hfq-like protein in archaea: Crystal structure and functional characterization of the Sm protein from Methanococcus jannaschii. RNA, 13, 2213–2223. doi:10.1261/rna.689007
  • Nikulin, A., Stolboushkina, E., Perederina, A., Vassilieva, I., Blaesi, U., Moll, I., … Nikonov, S. (2005). Structure of Pseudomonas aeruginosa Hfq protein. Acta Crystallographica. Section D, Biological Crystallography, 61, 141–146. doi:10.1107/S0907444904030008
  • Notredame, C., Higgins, D. G., & Heringa, J. (2000). T-coffee: A novel method for fast and accurate multiple sequence alignment. Journal of Molecular Biology, 302, 205–217. doi:10.1006/jmbi.2000.4042
  • Panja, S., Schu, D. J., Woodson, S. A. (2013). Conserved arginines on the rim of Hfq catalyze base pair formation and exchange. Nucleic Acids Research, 41, 7536–7546. doi:10.1093/nar/gkt521
  • Peng, Y., Curtis, J. E., Fang, X., Woodson, S. A. (2014). Structural model of an mRNA in complex with the bacterial chaperone Hfq. Proceedings of the National Academy of Sciences, 111, 17134–17139. doi:10.1073/pnas.1410114111
  • Pomeranz Krummel, D. A., Oubridge, C., Leung, A. K. W., & Nagai, K. (2009). Crystal structure of human spliceosomal U1 snRNP at 5.5  Å resolution. Nature, 458, 475–480. doi:10.1038/nature07851
  • Robinson, K. E., Orans, J., Kovach, A. R., Link, T. M., & Brennan, R. G. (2013). Mapping Hfq-RNA interaction surfaces using tryptophan fluorescence quenching. Nucleic Acids Research, 42(4), 1–14. doi:10.1093/nar/gkt1171
  • Sauer, E. (2013). Structure and RNA-binding properties of the bacterial LSm protein Hfq. RNA Biology, 10, 610–618. doi:10.4161/rna.24201
  • Sauer, E., & Weichenrieder, O. (2011). Structural basis for RNA 3′-end recognition by Hfq. Proceedings of the National Academy of Sciences, 108, 13065–13070. doi:10.1073/pnas.1103420108
  • Sauer, E., Schmidt, S., & Weichenrieder, O. (2012). Small RNA binding to the lateral surface of Hfq hexamers and structural rearrangements upon mRNA target recognition. Proceedings of the National Academy of Sciences, 109, 9396–9401. doi:10.1073/pnas.1202521109
  • Schu, D. J., Zhang, A., Gottesman, S., & Storz, G. (2015). Alternative Hfq-sRNA interaction modes dictate alternative mRNA recognition. The EMBO Journal, 34, 2557–2573. doi:10.15252/embj.201591569
  • Schulz, E. C., & Barabas, O. (2014). Structure of an Escherichia coli Hfq:RNA complex at 0.97 Å resolution. Acta Crystallographica. Section F, Structural Biology Communications, 70, 1492–1497. doi:10.1107/S2053230X14020044
  • Schumacher, M. A., Pearson, R. F., Møller, T., Valentin-Hansen, P., & Brennan, R. G. (2002). Structures of the pleiotropic translational regulator Hfq and an Hfq-RNA complex: A bacterial Sm-like protein. The EMBO Journal, 21, 3546–3556. doi:10.1093/emboj/cdf322
  • Sittka, A., Sharma, C. M., Rolle, K., & Vogel, J. (2009). Deep sequencing of salmonella RNA associated with heterologous Hfq proteins in vivo reveals small RNAs as a major target class and identifies RNA processing phenotypes. RNA Biology, 6, 266–275. doi:10.4161/rna.6.3.8332
  • Someya, T., Baba, S., Fujimoto, M., Kawai, G., Kumasaka, T., & Nakamura, K. (2012). Crystal structure of Hfq from Bacillus subtilis in complex with SELEX-derived RNA aptamer: Insight into RNA-binding properties of bacterial Hfq. Nucleic Acids Research, 40, 1856–1867. doi:10.1093/nar/gkr892
  • Sun, X., & Wartell, R. M. (2006). Escherichia coli Hfq binds A18 and DsrA domain II with similar 2:1 Hfq6/RNA stoichiometry using different surface sites. Biochemistry, 45, 4875–4887. doi:10.1021/bi0523613
  • Tharun, S., He, W., Mayes, A. E., Lennertz, P., Beggs, J. D., & Parker, R. (2000). Yeast Sm-like proteins function in mRNA decapping and decay. Nature, 404, 515–518. doi:10.1038/35006676
  • Thore, S., Mayer, C., Sauter, C., Weeks, S., & Suck, D. (2003). Crystal structures of the Pyrococcus abyssi Sm core and its complex with RNA: Common features of RNA binding in archaea and eukarya. Journal of Biological Chemistry, 278, 1239–1247. doi:10.1074/jbc.M207685200
  • Törö, I., Basquin, J., Teo-Dreher, H., & Suck, D. (2002). Archaeal Sm proteins form heptameric and hexameric complexes: Crystal structures of the Sm1 and Sm2 proteins from the hyperthermophile Archaeoglobus fulgidus. Journal of Molecular Biology, 320, 129–142. doi:10.1016/S0022-2836(02)00406-0
  • Vogel, J., & Luisi, B. F. (2011). Hfq and its constellation of RNA. Nature Reviews. Microbiology, 9, 578–589. doi:10.1038/nrmicro2615
  • Vogel, J., Gottesman, S., Belasco, J., & Narberhaus, F. (2014). Regulating with RNA in bacteria 2013. RNA Biology, 11, 403–412. doi:10.4161/rna.29533
  • Wang, W., Wang, L., Zou, Y., Zhang, J., Gong, Q., Wu, J., & Shi, Y. (2011). Cooperation of Escherichia coli Hfq hexamers in DsrA binding. Genes & Development, 25, 2106–2117. doi:10.1101/gad.16746011.2004
  • Wang, W., Wang, L., Wu, J., Gong, Q., & Shi, Y. (2013). Hfq-bridged ternary complex is important for translation activation of rpoS by DsrA. Nucleic Acids Research, 41, 5938–5948. doi:10.1093/nar/gkt276
  • Wang, L., Wang, W., Li, F., Zhang, J., Wu, J., Gong, Q., & Shi, Y. (2015). Structural insights into the recognition of the internal A-rich linker from OxyS sRNA by Escherichia coli Hfq. Nucleic Acids Research, 43, 2400–2411. doi:10.1093/nar/gkv072
  • Weber, G., Trowitzsch, S., Kastner, B., Lührmann, R., & Wahl, M. C. (2010). Functional organization of the Sm core in the crystal structure of human U1 snRNP. The EMBO Journal, 29, 4172–4184. doi:10.1038/emboj.2010.295
  • Weichenrieder, O. (2014). RNA binding by Hfq and ring-forming LSm proteins. RNA Biology, 11, 537–549. doi:10.4161/rna.29144
  • Wilusz, C. J., & Wilusz, J. (2005). Eukaryotic Lsm proteins: Lessons from bacteria. Nature Structural & Molecular Biology, 12, 1031–1036. doi:10.1038/nsmb1037
  • Wilusz, C. J., & Wilusz, J. (2013). Lsm proteins and Hfq. RNA Biology, 10, 592–601. doi:10.4161/rna.23695
  • Winn, M. D., Ballard, C. C., Cowtan, K. D., Dodson, E. J., Emsley, P., Evans, P. R., … Wilson, K. S. (2011). Overview of the CCP 4 suite and current developments. Acta Crystallographica. Section D, Biological Crystallography, 67, 235–242. doi:10.1107/S0907444910045749
  • Zaric, B., Chami, M., Remigy, H., Engel, A., Ballmer-Hofer, K., Winkler, F. K., & Kambach, C. (2005). Reconstitution of two recombinant LSm protein complexes reveals aspects of their architecture, assembly, and function. Journal of Biological Chemistry, 280, 16066–16075. doi:10.1074/jbc.M414481200
  • Zhang, A., Schu, D. J., Tjaden, B. C., Storz, G., & Gottesman, S. (2013). Mutations in interaction surfaces differentially impact E. coli Hfq association with small RNAs and their mRNA targets. Journal of Molecular Biology, 425, 3678–3697. doi:10.1016/j.jmb.2013.01.006
  • Zheng, A., Panja, S., & Woodson, S. A. (2016). Arginine patch predicts the RNA annealing activity of Hfq from gram negative and Gram positive bacteria. Journal of Molecular Biology, 11, 2259–2264. doi:10.1016/j.jmb.2016.03.027
  • Zhou, L., Hang, J., Zhou, Y., Wan, R., Lu, G., Yin, P., … Shi, Y. (2013). Crystal structures of the Lsm complex bound to the 3′ end sequence of U6 small nuclear RNA. Nature, 506, 116–120. doi:10.1038/nature12803

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.