243
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

Conformational dynamics of Peb4 exhibit “mother’s arms” chain model: a molecular dynamics study

ORCID Icon, ORCID Icon & ORCID Icon
Pages 2186-2196 | Received 19 Apr 2016, Accepted 28 Jun 2016, Published online: 19 Jul 2016

References

  • Asakura, H., Yamasaki, M., Yamamoto, S., & Igimi, S. (2007). Deletion of Peb4 gene impairs cell adhesion and biofilm formation in Campylobacter jejuni. FEMS Microbiology Letters, 275, 278–285.10.1111/fml.2007.275.issue-2
  • Ashgar, S. S. A., Oldfield, N. J., Wooldridge, K. G., Jones, M. A., Irving, G. J., Turner, D. P. J., & Ala’Aldeen, D. A. A. (2007). CapA, an autotransporter protein of Campylobacter jejuni, mediates association with human epithelial cells and colonization of the chicken gut. Journal of Bacteriology, 189, 1856–1865.10.1128/JB.01427-06
  • Barends, T. R. M., Brosi, R. W. W., Steinmetz, A., Scherer, A., Hartmann, E., Eschenbach, J., … Reinstein, J. (2013). Combining crystallography and EPR: Crystal and solution structures of the multidomain cochaperone DnaJ. Acta Crystallographica Section D Biological Crystallography, 69, 1540–1552.10.1107/S0907444913010640
  • Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81, 3684–3690.10.1063/1.448118
  • Berendsen, H. J. C., van der Spoel, D., & van Drunen, R. (1995). GROMACS: A message-passing parallel molecular dynamics implementation. Computer Physics Communications, 91, 43–56.10.1016/0010-4655(95)00042-E
  • Bitto, E., & McKay, D. B. (2002). Crystallographic structure of SurA, a molecular chaperone that facilitates folding of outer membrane porins. Structure, 10, 1489–1498.10.1016/S0969-2126(02)00877-8
  • Blaser, M. J. (1997). Epidemiologic and clinical features of Campylobacter jejuni infections. The Journal of Infectious Diseases, 176, S103–S105.10.1086/jid.1997.176.issue-s2
  • Bussi, G., Donadio, D., & Parrinello, M. (2007). Canonical sampling through velocity rescaling. The Journal of Chemical Physics, 126, 014101.10.1063/1.2408420
  • Clantin, B., Leyrat, C., Wohlkönig, A., Hodak, H., Ribeiro, E. d. A., Jr., Martinez, N., … Jamin, M. (2010). Structure and plasticity of the peptidyl-prolyl isomerase Par27 of Bordetella pertussis revealed by X-ray diffraction and small-angle X-ray scattering. Journal of Structural Biology, 169, 253–265.10.1016/j.jsb.2009.11.007
  • Dantu, S. C., Kachariya, N. N., & Kumar, A. (2016). Molecular dynamics simulations elucidate the mode of protein recognition by Skp1 and the F-box domain in the SCF complex. Proteins: Structure, Function, and Bioinformatics, 84, 159–171.10.1002/prot.24963
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98, 10089–10092.10.1063/1.464397
  • Del Rocio Leon-Kempis, M., Guccione, E., Mulholland, F., Williamson, M. P., & Kelly, D. J. (2006). The Campylobacter jejuni PEB1a adhesin is an aspartate/glutamate-binding protein of an ABC transporter essential for microaerobic growth on dicarboxylic amino acids. Molecular Microbiology, 60, 1262–1275.10.1111/mmi.2006.60.issue-5
  • Dingle, K. E., Van Den Braak, N., Colles, F. M., Price, L. J., Woodward, D. L., Rodgers, F. G., … Maiden, M. C. J. (2001). Sequence typing confirms that Campylobacter jejuni strains associated with Guillain-Barre and Miller-Fisher syndromes are of diverse genetic lineage, serotype, and flagella type. Journal of Clinical Microbiology, 39, 3346–3349.10.1128/JCM.39.9.3346-3349.2001
  • Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., & Pedersen, L. G. (1995). A smooth particle mesh Ewald method. The Journal of Chemical Physics, 103, 8577–8593.10.1063/1.470117
  • Feenstra, K. A., Hess, B., & Berendsen, H. J. C. (1999). Improving efficiency of large time-scale molecular dynamics simulations of hydrogen-rich systems. Journal of Computational Chemistry, 20, 786–798.10.1002/(ISSN)1096-987X
  • Ferbitz, L., Maier, T., Patzelt, H., Bukau, B., Deuerling, E., & Ban, N. (2004). Trigger factor in complex with the ribosome forms a molecular cradle for nascent proteins. Nature, 431, 590–596.10.1038/nature02899
  • Flanagan, R. C., Neal-McKinney, J. M., Dhillon, A. S., Miller, W. G., & Konkel, M. E. (2009). Examination of Campylobacter jejuni putative adhesins leads to the identification of a new protein, designated FlpA, required for chicken colonization. Infection and Immunity, 77, 2399–2407.10.1128/IAI.01266-08
  • Friedman, C. R., Neimann, J., Wegener, H. C., & Tauxe, R. V. (2000). Epidemiology of Campylobacter jejuni infections in the United States and other industrialized nations. Washington, DC: ASM International.
  • Gotzke, H., Palombo, I., Muheim, C., Perrody, E., Genevaux, P., Kudva, R., … Daley, D. O. (2014). YfgM Is an ancillary subunit of the SecYEG translocon in Escherichia coli. Journal of Biological Chemistry, 289, 19089–19097.10.1074/jbc.M113.541672
  • Han, W., & Christen, P. (2001). Mutations in the interdomain linker region of DnaK abolish the chaperone action of the DnaK/DnaJ/GrpE system. FEBS Letters, 497, 55–58.10.1016/S0014-5793(01)02435-8
  • Hess, B. (2008). P-LINCS: A parallel linear constraint solver for molecular simulation. Journal of Chemical Theory and Computation, 4, 116–122.10.1021/ct700200b
  • Hess, B., Bekker, H., Berendsen, H. J. C., & Fraaije, J. G. E. M. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18, 1463–1472.10.1002/(ISSN)1096-987X
  • Hess, B., Kutzner, C., van der Spoel, D., & Lindahl, E. (2008). GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. Journal of Chemical Theory and Computation, 4, 435–447.10.1021/ct700301q
  • Hoffmann, A., Bukau, B., & Kramer, G. (2010). Structure and function of the molecular chaperone trigger factor. Biochimica et Biophysica Acta (BBA) – Molecular Cell Research, 1803, 650–661.
  • Hornak, V., Abel, R., Okur, A., Strockbine, B., Roitberg, A., & Simmerling, C. (2006). Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins: Structure, Function, and Bioinformatics, 65, 712–725.10.1002/prot.v65:3
  • Hu, K., Galius, V., & Pervushin, K. (2006). Structural plasticity of peptidyl−prolyl isomerase sFkpA is a key to its chaperone function as revealed by solution NMR. Biochemistry, 45, 11983–11991.10.1021/bi0607913
  • Hu, L., Tall, B. D., Curtis, S. K., & Kopecko, D. J. (2008). Enhanced microscopic definition of Campylobacter jejuni 81-176 adherence to, invasion of, translocation across, and exocytosis from polarized human intestinal caco-2 cells. Infection and Immunity, 76, 5294–5304.10.1128/IAI.01408-07
  • Jin, S., Song, Y. C., Emili, A., Sherman, P. M., & Chan, V. L. (2003). JlpA of Campylobacter jejuni interacts with surface-exposed heat shock protein 90α and triggers signalling pathways leading to the activation of NF-κB and p38 MAP kinase in epithelial cells. Cellular Microbiology, 5, 165–174.10.1046/j.1462-5822.2003.00265.x
  • Kahra, D., Kovermann, M., Löw, C., Hirschfeld, V., Haupt, C., Balbach, J., & Hübner, C. G. (2011). Conformational plasticity and dynamics in the generic protein folding catalyst SlyD unraveled by single-molecule FRET. Journal of Molecular Biology, 411, 781–790.10.1016/j.jmb.2011.05.002
  • Kale, A., Phansopa, C., Suwannachart, C., Craven, C. J., Rafferty, J. B., & Kelly, D. J. (2011). The virulence factor Peb4 (Cj0596) and the periplasmic protein Cj1289 are two structurally related SurA-like chaperones in the human pathogen Campylobacter jejuni. Journal of Biological Chemistry, 286, 21254–21265.10.1074/jbc.M111.220442
  • Konkel, M. E., Larson, C. L., & Flanagan, R. C. (2010). Campylobacter jejuni FlpA binds fibronectin and is required for maximal host cell adherence. Journal of Bacteriology, 192, 68–76.10.1128/JB.00969-09
  • Kovermann, M., Zierold, R., Haupt, C., Löw, C. & Balbach, J. (2011). NMR relaxation unravels interdomain crosstalk of the two domain prolyl isomerase and chaperone SlyD. Biochimica et Biophysica Acta (BBA) – Proteins and Proteomics, 1814, 873–881.10.1016/j.bbapap.2011.03.016
  • Lazar, S. W., & Kolter, R. (1996). SurA assists the folding of Escherichia coli outer membrane proteins. Journal of Bacteriology, 178, 1770–1773.
  • Lemos, A., Morais, L., Fontes, M. d. C., Pires, I., & Vieira-Pinto, M. (2015). Campylobacter spp. isolation from infected poultry livers with and without necrotic lesions. Food Control, 50, 236–242.10.1016/j.foodcont.2014.08.027
  • Lindahl, E., Hess, B., & van der Spoel, D. (2001). GROMACS 3.0: A package for molecular simulation and trajectory analysis. Molecular Modeling Annual, 7, 306–317.
  • Liu, C.-P., Zhou, Q.-M., Fan, D.-J., & Zhou, J.-M. (2010). PPIase domain of trigger factor acts as auxiliary chaperone site to assist the folding of protein substrates bound to the crevice of trigger factor. The International Journal of Biochemistry & Cell Biology, 42, 890–901.
  • Mahoney, M. W., & Jorgensen, W. L. (2000). A five-site model for liquid water and the reproduction of the density anomaly by rigid, nonpolarizable potential functions. The Journal of Chemical Physics, 112, 8910–8922.10.1063/1.481505
  • Martinez-Hackert, E., & Hendrickson, W. A. (2009). Promiscuous substrate recognition in folding and assembly activities of the trigger factor chaperone. Cell, 138, 923–934.10.1016/j.cell.2009.07.044
  • Miller, W. G., & Mandrell, R. E. (2005). Prevalence of Campylobacter in the food and water supply: Incidence, outbreaks, isolation and detection. In J. M. Ketley & M. E. Konkel (Eds.), Campylobacter: Molecular and cellular biology (pp. 101–163). Great Britain, Horizon Scientific Press.
  • Min, T., Vedadi, M., Watson, D. C., Wasney, G. A., Munger, C., … Young, N. M. (2009). Specificity of Campylobacter jejuni adhesin PEB3 for phosphates and structural differences among its ligand complexes. Biochemistry, 48, 3057–3067.10.1021/bi802195d
  • Mitchell, A., Chang, H.-Y., Daugherty, L., Fraser, M., Hunter, S., Lopez, R., … Finn, R. D. (2015). The InterPro protein families database: The classification resource after 15 years. Nucleic Acids Research, 43, D213–D221.10.1093/nar/gku1243
  • Monteville, M. R., Yoon, J. E., & Konkel, M. E. (2003). Maximal adherence and invasion of INT 407 cells by Campylobacter jejuni requires the CadF outer-membrane protein and microfilament reorganization. Microbiology, 149, 153–165.10.1099/mic.0.25820-0
  • Naveen, V., Chu, C.-H., Chen, B.-W., Tsai, Y.-C., Hsiao, C.-D., & Sun, Y.-J. (2016). Helicobacter pylori cell binding factor 2: Insights into domain motion. Journal of Structural Biology, 194, 90–101.10.1016/j.jsb.2016.02.002
  • Nosé, S., & Klein, M. L. (1983). Constant pressure molecular dynamics for molecular systems. Molecular Physics, 50, 1055–1076.10.1080/00268978300102851
  • Ó Cróinín, T., & Backert, S. (2012). Host epithelial cell invasion by Campylobacter jejuni: trigger or zipper mechanism? Frontiers in Cellular and Infection Microbiology, 2. Retrieved from http://journal.frontiersin.org/article/10.3389/fcimb.2012.00025/full
  • Pei, Z., Burucoa, C., Grignon, B., Baqar, S., Huang, X.-Z., Kopecko, D. J., … Blaser, M. J. (1998). Mutation in the peb1A locus of Campylobacter jejuni reduces interactions with epithelial cells and intestinal colonization of mice. Infection and Immunity, 66, 938–943.
  • Pei, Z. H., Ellison, R. T., & Blaser, M. J. (1991). Identification, purification, and characterization of major antigenic proteins of Campylobacter jejuni. Journal of Biological Chemistry, 266, 16363–16369.
  • Pronk, S., Pall, S., Schulz, R., Larsson, P., Bjelkmar, P., Apostolov, R., … Lindahl, E. (2013). GROMACS 4.5: A high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics, 29, 845–854.10.1093/bioinformatics/btt055
  • Rathbun, K. M., Hall, J. E., & Thompson, S. A. (2009). Cj0596 is a periplasmic peptidyl prolyl cis–trans isomerase involved in Campylobacter jejuni motility, invasion, and colonization. BMC Microbiology, 9, 1–16.
  • Rathbun, K. M., & Thompson, S. A. (2009). Mutation of Peb4 alters the outer membrane protein profile of Campylobacter jejuni. FEMS Microbiology Letters, 300, 188–194.10.1111/fml.2009.300.issue-2
  • Saul, F. A., Arié, J. P., Vulliez-le Normand, B., Kahn, R., Betton, J. M., & Bentley, G. A. (2004). Structural and Functional Studies of FkpA from Escherichia coli, a cis/trans peptidyl-prolyl isomerase with chaperone activity. Journal of Molecular Biology, 335, 595–608.10.1016/j.jmb.2003.10.056
  • Segatori, L., Murphy, L., Arredondo, S., Kadokura, H., Gilbert, H., Beckwith, J., & Georgiou, G. (2006). Conserved role of the linker α-helix of the bacterial disulfide isomerase DsbC in the avoidance of misoxidation by DsbB. Journal of Biological Chemistry, 281, 4911–4919.10.1074/jbc.M505453200
  • Shoaf-Sweeney, K. D., Larson, C. L., Tang, X., & Konkel, M. E. (2008). Identification of Campylobacter jejuni proteins recognized by maternal antibodies of chickens. Applied and Environmental Microbiology, 74, 6867–6875.10.1128/AEM.01097-08
  • Stirling, P. C., Bakhoum, S. F., Feigl, A. B., & Leroux, M. R. (2006). Convergent evolution of clamp-like binding sites in diverse chaperones. Nature Structural & Molecular Biology, 13, 865–870.10.1038/nsmb1153
  • Thomas, A. S., Mao, S., & Elcock, A. H. (2013). Flexibility of the bacterial chaperone trigger factor in microsecond-timescale molecular dynamics simulations. Biophysical Journal, 105, 732–744.10.1016/j.bpj.2013.06.028
  • Veenendaal, A. K., van der Does, C., & Driessen, A. J. (2004). The protein-conducting channel SecYEG. Biochimica et Biophysica Acta (BBA) – Molecular Cell Research, 1694, 81–95.10.1016/j.bbamcr.2004.02.009
  • Winter, J., & Jakob, U. (2004). Beyond transcription – New mechanisms for the regulation of molecular chaperones. Critical Reviews in Biochemistry and Molecular Biology, 39, 297–317.10.1080/10409230490900658
  • Xu, X., Wang, S., Hu, Y.-X., & McKay, D. B. (2007). The periplasmic bacterial molecular chaperone SurA adapts its structure to bind peptides in different conformations to assert a sequence preference for aromatic residues. Journal of Molecular Biology, 373, 367–381.10.1016/j.jmb.2007.07.069
  • Zhang, Q., Meitzler, J. C., Huang, S., & Morishita, T. (2000). Sequence polymorphism, predicted secondary structures, and surface-exposed conformational epitopes of Campylobacter major outer membrane protein. Infection and Immunity, 68, 5679–5689.10.1128/IAI.68.10.5679-5689.2000

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.