252
Views
7
CrossRef citations to date
0
Altmetric
Research Articles

Deciphering molecular aspects of interaction between anticancer drug mitoxantrone and tRNA

, , , , &
Pages 2090-2102 | Received 20 Apr 2016, Accepted 08 Jul 2016, Published online: 09 Aug 2016

References

  • Agarwal, S., Chadha, D., & Mehrotra, R. (2014). Molecular modeling and spectroscopic studies of semustine binding with DNA and its comparison with lomustine–DNA adduct formation. Journal of Biomolecular Structure and Dynamics, 33, 1653–1668. doi:10.1080/07391102.2014.968874
  • Agarwal, S., Jangir, D. K., & Mehrotra, R. (2013). Spectroscopic studies of the effects of anticancer drug mitoxantrone interaction with calf-thymus DNA. Journal of Photochemistry and Photobiology B: Biology, 120, 177–182.10.1016/j.jphotobiol.2012.11.001
  • Agarwal, S., Jangir, D. K., Mehrotra, R., Lohani, N., & Rajeswari, M. (2014). A structural insight into major groove directed binding of nitrosourea derivative nimustine with DNA: A spectroscopic study. PLoS One, 9, e104115.10.1371/journal.pone.0104115
  • Agarwal, S., Jangir, D. K., Singh, P., & Mehrotra, R. (2014). Spectroscopic analysis of the interaction of lomustine with calf thymus DNA. Journal of Photochemistry and Photobiology B: Biology, 130, 281–286.10.1016/j.jphotobiol.2013.11.017
  • Agarwal, S., Ray, B., & Mehrotra, R. (2015). SERS as an advanced tool for investigating chloroethyl nitrosourea derivatives complexation with DNA. International Journal of Biological Macromolecules, 81, 891–897.10.1016/j.ijbiomac.2015.09.024
  • Agudelo, D., Bourassa, P., Beauregard, M., Bérubé, G., & Tajmir-Riahi, H.-A. (2013). tRNA binding to antitumor drug doxorubicin and its analogue. PLoS One, 8, e69248.10.1371/journal.pone.0069248
  • Antony, T., Atreyi, M., & Rao, M. (1995). Interaction of methylene blue with transfer RNA: A spectroscopic study. Chemico-Biological Interactions, 97, 199–214.10.1016/0009-2797(95)03616-T
  • Banyay, M., Sarkar, M., & Gräslund, A. (2003). A library of IR bands of nucleic acids in solution. Biophysical Chemistry, 104, 477–488.10.1016/S0301-4622(03)00035-8
  • Barcelo, F., Capó, D., & Portugal, J. (2002). Thermodynamic characterization of the multivalent binding of chartreusin to DNA. Nucleic Acids Research, 30, 4567–4573.10.1093/nar/gkf558
  • Basu, A., & Suresh Kumar, G. (2016). Studies on the interaction of the food colorant tartrazine with double stranded deoxyribonucleic acid. Journal of Biomolecular Structure and Dynamics, 34, 935–942. doi:10.1080/07391102.2015.1057766
  • Bathaie, S. Z., Ajloo, D., Daraie, M., & Ghadamgahi, M. (2015). Comparative study of the interaction of meso-tetrakis (N-para-trimethyl-anilium) porphyrin (TMAP) in its free base and Fe derivative form with oligo (dA. dT) 15 and oligo (dG. dC) 15. Journal of Biomolecular Structure and Dynamics, 33, 1598–1611. doi:10.1080/07391102.2014.963674
  • Berova, N., Nakanishi, K., & Woody, R. W. (2000). Circular dichroism: Principles and applications ( Vol. 912). New York, NY: Wiley-VCH.
  • Bhattacharyya, J., Basu, A., & Kumar, G. S. (2014). Intercalative interaction of the anticancer drug mitoxantrone with double stranded DNA: A calorimetric characterization of the energetics. The Journal of Chemical Thermodynamics, 75, 45–51.10.1016/j.jct.2014.04.015
  • Chaires, J. B. (2006). A thermodynamic signature for drug–DNA binding mode. Archives of Biochemistry and Biophysics, 453, 26–31.10.1016/j.abb.2006.03.027
  • Chen, K.-X., Gresh, N., & Pullman, B. (1986). A theoretical investigation on the sequence selective binding of mitoxantrone to double-stranded tetranucleotides. Nucleic Acids Research, 14, 3799–3812.10.1093/nar/14.9.3799
  • Connors, K. (1987). Binding constants: The measurement of molecular complex stability (pp. 141–188). New York: Wiley-Interscience.
  • Curtis-Johnson, W., Nakanishi, K., Berova, N., & Woody, R. (1994). CD of nucleic acids in circular dichroism. Principles and Applications (pp. 523–540). New York: VHS.
  • Da Costa, J. B., & Dieckmann, T. (2013). Structure and thermodynamics of drug-RNA aptamer interactions. Mini-Reviews in Medicinal Chemistry, 13, 467–477.10.2174/1389557511313040001
  • Das, S., Parveen, S., & Pradhan, A. B. (2014). An insight into the interaction of phenanthridine dyes with polyriboadenylic acid: Spectroscopic and thermodynamic approach. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 118, 356–366.10.1016/j.saa.2013.08.106
  • Enache, M., & Volaschi, E. (2005). Electrochemical and spectral study of the interaction of antitumoral drug mitoxantrone with DNA. Revue Roumaine de Chimie, 50, 131–140.
  • Eriksson, M., & Nordén, B. (2001). Linear and circular dichroism of drug-nucleic acid complexes. Methods in Enzymology, 340, 68–98.10.1016/S0076-6879(01)40418-6
  • Gallego, J., & Varani, G. (2001). Targeting RNA with small-molecule drugs: Therapeutic promise and chemical challenges. Accounts of Chemical Research, 34, 836–843.10.1021/ar000118k
  • Giri, P., & Kumar, G. S. (2009). Molecular aspects of small molecules-poly(A) interaction: An approach to RNA based drug design. Current Medicinal Chemistry, 16, 965–987.10.2174/092986709787581932
  • Hajihassan, Z., & Rabbani-Chadegani, A. (2009). Studies on the binding affinity of anticancer drug mitoxantrone to chromatin, DNA and histone proteins. Journal of Biomedical Science, 16, 1–7.10.1186/1423-0127-16-31
  • Hajihassan, Z., & Rabbani-Chadegani, A. (2011). Interaction of mitoxantrone, as an anticancer drug, with chromatin proteins, core histones and H1, in solution. International Journal of Biological Macromolecules, 48, 87–92.10.1016/j.ijbiomac.2010.10.002
  • Hermann, T. (2002). Rational ligand design for RNA: The role of static structure and conformational flexibility in target recognition. Biochimie, 84, 869–875.10.1016/S0300-9084(02)01460-8
  • Hermann, T., & Westhof, E. (1998). RNA as a drug target: Chemical, modelling, and evolutionary tools. Current Opinion in Biotechnology, 9, 66–73.10.1016/S0958-1669(98)80086-4
  • Hermann, T., & Westhof, E. (2000). Rational drug design and high-throughput techniques for RNA targets. Combinatorial Chemistry & High Throughput Screening, 3, 219–234.
  • Herzyk, P., Neidle, S., & Goodfellow, J. (1992). Conformation and dynamics of drug-DNA intercalation. Journal of Biomolecular Structure and Dynamics, 10, 97–139.10.1080/07391102.1992.10508633
  • Islam, M. M., Sinha, R., & Kumar, G. S. (2007). RNA binding small molecules: Studies on t-RNA binding by cytotoxic plant alkaloids berberine, palmatine and the comparison to ethidium. Biophysical Chemistry, 125, 508–520.10.1016/j.bpc.2006.11.001
  • Jaumot, J., & Gargallo, R. (2012). Experimental methods for studying the interactions between G-quadruplex structures and ligands. Current Pharmaceutical Design, 18, 1900–1916.10.2174/138161212799958486
  • Jeon, S. H., Jin, B., Kim, S. K., & Lee, H. M. (2015). Conformations of adducts formed between the genotoxic benzo[a]pyrene-7,8-dione and 2′-deoxycytidine. Journal of Biomolecular Structure and Dynamics, 33, 2059–2068. doi:10.1080/07391102.2015.1057766
  • Johnson, W. (1994). CD of nucleic acids. In Circular dichroism: Principles and applications (Vol. 2).
  • Li, N., Ma, Y., Yang, C., Guo, L., & Yang, X. (2005). Interaction of anticancer drug mitoxantrone with DNA analyzed by electrochemical and spectroscopic methods. Biophysical Chemistry, 116, 199–205.10.1016/j.bpc.2005.04.009
  • Lown, J. W., Morgan, A. R., Yen, S. F., Wang, Y. H., & Wilson, W. D. (1985). Characteristics of the binding of the anticancer agents mitoxantrone and ametantrone and related structures to deoxyribonucleic acids. Biochemistry, 24, 4028–4035.10.1021/bi00336a034
  • Monaselidze, J., Gorgoshidze, M., Khachidze, D., Kiladze, M., Bregadze, V., Kiziria, E., … Hakobyan, N. (2015). Conformations of DNA in the presence of nanomole concentrations of Co+ 2 ions and mezo-tetra (4-N-oxyethylpiridil) porphyrin. Journal of Biomolecular Structure and Dynamics, 33, 267–273.10.1080/07391102.2013.873001
  • Nafisi, S., Malekabady, Z. M., & Khalilzadeh, M. A. (2010). Interaction of β-carboline alkaloids with RNA. DNA and Cell Biology, 29, 753–761.10.1089/dna.2010.1087
  • Nafisi, S., Shadaloi, A., Feizbakhsh, A., & Tajmir-Riahi, H. A. (2009). RNA binding to antioxidant flavonoids. Journal of Photochemistry and Photobiology B: Biology, 94(1), 1–7.10.1016/j.jphotobiol.2008.08.001
  • Nagaraj, K., Ambika, S., & Arunachalam, S. (2015). Synthesis, CMC determination, and intercalative binding interaction with nucleic acid of a surfactant–copper (II) complex with modified phenanthroline ligand (dpq). Journal of Biomolecular Structure and Dynamics, 33, 274–288. doi:10.1080/07391102.2013.879837
  • Ouameur, A. A., Bourassa, P., & Tajmir-Riahi, H.-A. (2010). Probing tRNA interaction with biogenic polyamines. RNA, 16, 1968–1979.10.1261/rna.1994310
  • Pachter, J. A., Huang, C. H., DuVernay Jr., V. H., Prestayko, A. W., & Crooke, S. T. (1982). Viscometric and fluorometric studies of DNA interactions of several new anthracyclines. Biochemistry, 21, 1541–1547.10.1021/bi00536a012
  • Parker, B. S., Buley, T., Evison, B. J., Cutts, S. M., Neumann, G. M., Iskander, M. N., & Phillips, D. R. (2004). A Molecular understanding of mitoxantrone-DNA adduct formation: Effect of cytosine methylation and flanking sequences. Journal of Biological Chemistry, 279, 18814–18823.10.1074/jbc.M400931200
  • Pascale, L., Azoulay, S., Di Giorgio, A., Zenacker, L., Gaysinski, M., Clayette, P., & Patino, N. (2013). Thermodynamic studies of a series of homologous HIV-1 TAR RNA ligands reveal that loose binders are stronger Tat competitors than tight ones. Nucleic Acids Research, 41, 5851–5863.10.1093/nar/gkt237
  • Polyanichko, A., & Wieser, H. (2005). Fourier transform infrared/vibrational circular dichroism spectroscopy as an informative tool for the investigation of large supramolecular complexes of biological macromolecules. Biopolymers, 78, 329–339.10.1002/(ISSN)1097-0282
  • Ray, B., Agarwal, S., Lohani, N., Rajeswari, M. R., & Mehrotra, R. (2016). Structural, conformational and thermodynamic aspects of groove-directed-intercalation of flavopiridol into DNA. Journal of Biomolecular Structure and Dynamics, 1–18. doi:10.1080/07391102.2015.1118708
  • Rehman, S. U., Sarwar, T., Husain, M. A., Ishqi, H. M., & Tabish, M. (2015). Studying non-covalent drug-DNA interactions. Archives of Biochemistry and Biophysics, 576, 49–60. doi:10.1016/j.abb.2015.03.024
  • Sathyanarayana, D. N. (2007). Vibrational spectroscopy: Theory and applications. New Delhi: New Age International.
  • Skladanowski, A., & Konopa, J. (2000). Mitoxantrone and ametantrone induce interstrand cross-links in DNA of tumour cells. British Journal of Cancer, 82, 1300–1304.
  • Stuart, B. (2005). Infrared spectroscopy. Chichester: Wiley Online Library.10.1002/0471238961.0914061810151405.a01.pub2
  • Tyagi, G., Agarwal, S., & Mehrotra, R. (2015). tRNA binding with anti-cancer alkaloids–nature of interaction and comparison with DNA–alkaloids adducts. Journal of Photochemistry and Photobiology B: Biology, 142, 250–256.10.1016/j.jphotobiol.2014.12.009
  • Varadwaj, P., Misra, K., Sharma, A., & Kumar, R. (2010). Mitoxantrone: An agent with promises for anticancer therapies. Electronic Journal of Biology, 6, 36–42.
  • Wilson, W. D., & Li, K. (2000). Targeting RNA with small molecules. Current Medicinal Chemistry, 7, 73–98.10.2174/0929867003375434
  • Wilson, W., Mizan, S., Taniuos, F. A., Yao, S., & Zon, G. (1994). The interaction of intercalators and groove-binding agents with DNA triple-helical structures: The influence of ligand structure, DNA backbone modifications and sequence. Journal of Molecular Recognition, 7, 89–98.10.1002/(ISSN)1099-1352
  • Wilson, W. D., Ratmeyer, L., Zhao, M., Strekowski, L., & Boykin, D. (1993). The search for structure-specific nucleic acid-interactive drugs: Effects of compound structure on RNA versus DNA interaction strength. Biochemistry, 32, 4098–4104.10.1021/bi00066a035
  • Xavier, K. A., Eder, P. S., & Giordano, T. (2000). RNA as a drug target: Methods for biophysical characterization and screening. Trends in Biotechnology, 18, 349–356.10.1016/S0167-7799(00)01464-5
  • Xu, H., Liang, Y., Zhang, P., Du, F., Zhou, B.-R., Wu, J., … Ji, L.-N. (2005). Biophysical studies of a ruthenium (II) polypyridyl complex binding to DNA and RNA prove that nucleic acid structure has significant effects on binding behaviors. Journal of Biological Inorganic Chemistry, 10, 529–538.10.1007/s00775-005-0007-3

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.