117
Views
22
CrossRef citations to date
0
Altmetric
Research Articles

Whether 2-aminopurine induces incorporation errors at the DNA replication? A quantum-mechanical answer on the actual biological issue

ORCID Icon & ORCID Icon
Pages 3398-3411 | Received 24 Sep 2016, Accepted 18 Oct 2016, Published online: 26 Dec 2016

References

  • Alemán, E. A., de Silva, C., Patrick, E. M., Musier-Forsyth, K., & Rueda, D. (2014). Single-molecule fluorescence using nucleotide analogs: A proof-of-principle. The Journal of Physical Chemistry Letters, 5, 777–781. doi:10.1021/jz4025832
  • Atkins, P. W. (1998). Physical chemistry. Oxford: Oxford University Press.
  • Bader, R. F. W. (1990). Atoms in molecules: A quantum theory. Oxford: Oxford University Press.
  • Bebenek, K., Pedersen, L. C., & Kunkel, T. A. (2011). Replication infidelity via a mismatch with Watson−Crick geometry. Proceedings of the National Academy of Sciences of the United States of America, 108, 1862–1867. doi:10.1073/pnas.1012825108
  • Bonnist, E. Y. M., Liebert, K., Dryden, D. T. F., Jeltsch, A., & Jones, A. C. (2012). Using the fluorescence decay of 2-aminopurine to investigate conformational change in the recognition sequence of the EcoRV DNA- (adenine-N6)-methyltransferase on enzyme binding. Biophysical Chemistry, 160, 28–34. doi:10.1016/j.bpc.2011.09.001
  • Boys, S. F., & Bernardi, F. (1970). The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Molecular Physics, 19, 553–566. doi:10.1080/00268977000101561
  • Brovarets’, O. O. (2010). Physico-chemical nature of the spontaneous and induced by the mutagens transitions and transversions (PhD Thesis). Taras Shevchenko National University of Kyiv, Kyiv, Ukraine.
  • Brovarets’, O. O. (2015). Microstructural mechanisms of the origin of the spontaneous point mutations ( DrSci Thesis). Taras Shevchenko National University of Kyiv, Kyiv, Ukraine.
  • Brovarets’, O. O., & Hovorun, D. M. (2009). Physico-chemical mechanism of the wobble DNA base pairs Gua·Thy and Ade·Cyt transition into the mismatched base pairs Gua*·Thy and Ade·Cyt* formed by the mutagenic tautomers. Ukrainica Bioorganica Acta, 8, 12–18. Retrieved from http://www.bioorganica.org.ua/UBAdenovo/vol_7_2.htm
  • Brovarets’, O. O., & Hovorun, D. M. (2010). Molecular mechanisms of the mutagenic action of 2-aminopurine on DNA. Ukrainica Bioorganica Acta, 9, 11–17. Retrieved from http://www.bioorganica.org.ua/UBAdenovo/pubs_8_1_10/Brovaretc_2_UBA.pdf
  • Brovarets’, O. O., & Hovorun, D. M. (2011). IR vibrational spectra of H-bonded complexes of adenine, 2-aminopurine and 2-aminopurine+ with cytosine and thymine: Quantum-chemical study. Optics & Spectroscopy, 111, 750–757. doi:10.1134/S0030400X11120058
  • Brovarets’, O. O., & Hovorun, D. M. (2013a). Atomistic understanding of the C·T mismatched DNA base pair tautomerization via the DPT: QM and QTAIM computational approaches. Journal of Computational Chemistry, 34, 2577–2590. doi:10.1002/jcc.23412
  • Brovarets’, O. O., & Hovorun, D. M. (2013b). Atomistic nature of the DPT tautomerisation of the biologically important C·C* DNA base mispair containing amino and imino tautomers of cytosine: A QM and QTAIM approach. Physical Chemistry Chemical Physics, 15, 20091–20104. doi:10.1039/c3cp52644e
  • Brovarets’, O. O., & Hovorun, D. M. (2014a). DPT tautomerisation of the G·Asyn and A*·G*syn DNA mismatches: A QM/QTAIM combined atomistic investigation. Physical Chemistry Chemical Physics, 16, 9074–9085. doi:10.1039/c4cp00488d
  • Brovarets’, O. O., & Hovorun, D. M. (2014b). How does the long G·G* Watson–Crick DNA base mispair comprising keto and enol tautomers of the guanine tautomerise? The results of a QM/QTAIM investigation. Physical Chemistry Chemical Physics, 16, 15886–15899. doi:10.1039/c4cp01241 k
  • Brovarets’, O. O., & Hovorun, D. M. (2015a). How many tautomerization pathways connect Watson–Crick-like G*·T DNA base mispair and wobble mismatches? Journal of Biomolecular Structure & Dynamics, 33, 2297–2315. doi:10.1080/07391102.2015.1046936
  • Brovarets’, O. O., & Hovorun, D. M. (2015b). The nature of the transition mismatches with Watson–Crick architecture: The G*·T or G·T* DNA base mispair or both? A QM/QTAIM perspective for the biological problem. Journal of Biomolecular Structure & Dynamics, 33, 925–945. doi:10.1080/07391102.2014.924879
  • Brovarets’, O. O., & Hovorun, D. M. (2015c). Tautomeric transition between wobble A·C DNA base mispair and Watson–Crick-like A·C* mismatch: Microstructural mechanism and biological significance. Physical Chemistry Chemical Physics, 17, 15103–15110. doi:10.1039/c5cp01568e
  • Brovarets’, O. O., & Hovorun, D. M. (2015d). A novel conception for spontaneous transversions caused by homo-pyrimidine DNA mismatches: A QM/QTAIM highlight. Physical Chemistry Chemical Physics, 17, 21381–21388. doi:10.1039/c5cp03211c
  • Brovarets’, O. O., & Hovorun, D. M. (2015e). Novel physico-chemical mechanism of the mutagenic tautomerisation of the Watson–Crick-like A·G and C·T DNA base mispairs: A quantum-chemical picture. RSC Advances, 5, 66318–66333. doi:10.1039/C5RA11773A
  • Brovarets’, O. O., & Hovorun, D. M. (2015f). Wobble↔Watson–Crick tautomeric transitions in the homo-purine DNA mismatches: A key to the intimate mechanisms of the spontaneous transversions. Journal of Biomolecular Structure & Dynamics, 33, 2710–2715. doi:10.1080/07391102.2015.1077737
  • Brovarets’, O. O., & Hovorun, D. M. (2015g). New structural hypostases of the A·T and G·C Watson–Crick DNA base pairs caused by their mutagenic tautomerisation in a wobble manner: A QM/QTAIM prediction. RSC Advances, 5, 99594–99605. doi:10.1039/C5RA19971A
  • Brovarets’, O. O., & Hovorun, D. M. (2015h). How the long purine-purine DNA mismatches adapt their geometry to enzymatically competent? Structural mechanism and its quantum-mechanical grounds. Ukrainian Journal of Physics, 60, 748–756. doi:10.15407/ujpe60.08.0748
  • Brovarets’, O. O., & Hovorun, D. M. (2016). By how many tautomerisation routes the Watson–Crick-like A·C* DNA base mispair is linked with the wobble mismatches? A QM/QTAIM vision from a biological point of view. Structural Chemistry, 27, 119–131. doi:10.1007/s11224-015-0687-4
  • Brovarets’, O. O., & Pérez-Sánchez, H. E. (2016). Whether the amino-imino tautomerism of 2-aminopurine is involved into its mutagenicity? Results of a thorough QM investigation. RSC Advances, 6, 108255–108264. doi:10.1039/C6RA24277D
  • Brovarets’, O. O., Pérez-Sánchez, H. E., & Hovorun, D. M. (2016). Structural grounds for the 2-aminopurine mutagenicity: Novel insight into an old problem of the replication errors. RSC Advances, 6, 99546–99557. doi:10.1039/c6ra17787e
  • Brovarets’, O. O., Zhurakivsky, R. O., & Hovorun, D. M. (2010). Is there adequate ionization mechanism of the spontaneous transitions? Quantum-chemical investigation. Biopolymers and Cell, 26, 398–405. doi:10.7124/bc.00016F
  • Brovarets’, O. O., Zhurakivsky, R. O., & Hovorun, D. M. (2013a). DPT tautomerization of the long A·A* Watson–Crick base pair formed by the amino and imino tautomers of adenine: Combined QM and QTAIM investigation. Journal of Molecular Modeling, 19, 4223–4237. doi:10.1007/s00894-013-1880-2
  • Brovarets’, O. O., Zhurakivsky, R. O., & Hovorun, D. M. (2013b). The physico-chemical mechanism of the tautomerisation via the DPT of the long Hyp∗·Hyp Watson–Crick base pair containing rare tautomer: A QM and QTAIM detailed look. Chemical Physics Letters, 578, 126–132. doi:10.1016/j.cplett.2013.05.067
  • Brovarets’, O. O., Zhurakivsky, R. O., & Hovorun, D. M. (2014a). Does the tautomeric status of the adenine bases change upon the dissociation of the A*·Asyn Topal–Fresco DNA mismatch? A combined QM and QTAIM atomistic insight. Physical Chemistry Chemical Physics, 16, 3715–3725. doi:10.1039/c3cp54708f
  • Brovarets’, O. O., Zhurakivsky, R. O., & Hovorun, D. M. (2014b). Is the DPT tautomerization of the long A·G Watson–Crick DNA base mispair a source of the adenine and guanine mutagenic tautomers? A QM and QTAIM response to the biologically important question. Journal of Computational Chemistry, 35, 451–466. doi:10.1002/jcc.23515
  • Brovarets’, O. O., Zhurakivsky, R. O., & Hovorun, D. M. (2015). DPT tautomerisation of the wobble guanine·thymine DNA base mispair is not mutagenic: QM and QTAIM arguments. Journal of Biomolecular Structure and Dynamics, 33, 674–689. doi:10.1080/07391102.2014.897259
  • Dallmann, A., Dehmel, L., Peters, T., Mügge, C., Griesinger, C., Tuma, J., & Ernsting, N. P. (2010). 2-aminopurine incorporation perturbs the dynamics and structure of DNA. Angewandte Chemie International Edition, 49, 5989–5992. doi:10.1002/anie.201001312
  • Elvin, A., Alemán, E. A., & Rueda, D. (2011). 2-aminopurine single-molecule fluorescence, Biophysical Journal, 100(Suppl. 1), 474a.
  • Espinosa, E., Molins, E., & Lecomte, C. (1998). Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. Chemical Physics Letters, 285, 170–173. doi:10.1016/S0009-2614(98)00036-0
  • Fagan, P. A., Fàbrega, C., Eritja, R., Goodman, M. F., & Wemmer, D. E. (1996). NMR study of the conformation of the 2-aminopurine: Cytosine mismatch in DNA. Biochemistry, 35, 4026–4033. doi:10.1021/bi952657g
  • Fazakerley, G. V., Sowers, L. C., Eritja, R., Kaplan, B. E., & Goodman, M. F. (1987). NMR studies on an oligodeoxynucleotide containing 2-aminopurine opposite adenine. Biochemistry, 26, 5641–5646. doi:10.1021/bi00392a009
  • Frisch, M. J., Head-Gordon, M., & Pople, J. A. (1990). Semi-direct algorithms for the MP2 energy and gradient. Chemical Physics Letters, 166, 281–289. doi:10.1016/0009-2614(90)80030-H
  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., & Cheeseman, J. R., … Pople, J. A. (2010). GAUSSIAN 09 (Revision B.01). Wallingford, CT: Gaussian Inc.
  • Glickman, B. W. (1985). 2-aminopurine mutagenesis in Escherichia coli genetic consequences of nucleotide pool imbalance. In F. J. de Serres (Ed.), V.31 of the series Basic life sciences (pp. 353–379). New York, NY: Plenum Press. doi: 10.1007/978-1-4613-2449-2_22
  • Gondert, M. E., Tinsley, R. A., Rueda, D., & Walter, N. G. (2006). Catalytic core structure of the trans-acting HDV ribozyme is subtly influenced by sequence variation outside the core. Biochemistry, 45, 7563–7573. doi:10.1021/bi052116j
  • Goodman, M. F., Hopkins, R., & Gore, W. C. (1977). 2-Aminopurine-induced mutagenesis in T4 bacteriophage: A model relating mutation frequency to 2-aminopurine incorporation in DNA. Proceeding of the National Academy of Sciences of the United States of America, 74, 4806–4810. doi:10.1073/pnas.74.11.4806
  • Gorb, L., Podolyan, Y., Dziekonski, P., Sokalski, W. A., & Leszczynski, J. (2004). Double-proton transfer in adenine−thymine and guanine−cytosine base pairs. A post-hartree−fock ab initio study. Journal of the American Chemical Society, 126, 10119–10129. doi:10.1021/ja049155n
  • Guest, C. R. (1991). Dynamics of mismatched base pairs in DNA. Biochemistry, 30, 3271–3279. doi:10.1021/bi00227a015
  • Gutowski, M., Van Lenthe, J. H., Verbeek, J., Van Duijneveldt, F. B., & Chałasinski, G. (1986). The basis set superposition error in correlated electronic structure calculations. Chemical Physics Letters, 124, 370–375. doi:10.1016/0009-2614(86)85036-9
  • Hariharan, P. C., & Pople, J. A. (1973). The influence of polarization functions on molecular orbital hydrogenation energies. Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta), 28, 213−222. doi: 10.1007/BF00533485
  • Harris, D. A., Rueda, D., & Walter, N. G. (2002). Local conformational changes in the catalytic core of the trans-acting hepatitis delta virus ribozyme accompany catalysis. Biochemistry, 41, 12051–12061. doi:10.1021/bi026101m
  • Harris, V. H., Smith, C. L., Jonathan Cummins, W., Hamilton, A. L., Adams, H., Dickman, M., … Williams, D. M. (2003). The effect of tautomeric constant on the specificity of nucleotide incorporation during DNA replication: Support for the rare tautomer hypothesis of substitution mutagenesis. Journal of Molecular Biology, 326, 1389–1401. doi:10.1016/S0022-2836(03)00051-2
  • He, R. X., Duan, X. H., & Li, X. Y. (2006). Theoretical investigation of spectral properties and tautomerization mechanism of 2-aminopurine. Physical Chemistry Chemical Physics, 8, 587–591. doi:10.1039/b512242b
  • Holz, B., Weinhold, E., Klimasauskas, S., & Serva, S. (1998). 2-Aminopurine as a fluorescent probe for DNA base flipping by methyltransferases. Nucleic Acids Research, 26, 1076–1083. doi:10.1093/nar/26.4.1076
  • Hovorun, D. M., Mishchuk, Y. R., & Kondratyuk, I. V. (1996). On a quantum-chemical nature of a stereochemical nonrigidity of canonical nucleotide bases. Biopolymers & Cell, 12, 5–12. doi:10.7124/bc.000441
  • Hratchian, H. P., & Schlegel, H. B. (2005). Finding minima, transition states, and following reaction pathways on ab initio potential energy surfaces. In C. E. Dykstra, G. Frenking, K. S. Kim, & G. Scuseria (Eds.), Theory and applications of computational chemistry: The first 40 years (pp. 195–249). Amsterdam: Elsevier. doi:10.1016/B978-044451719-7/50053-6.
  • Inostroza-Rivera, R., Yahia-Ouahmed, M., Tognetti, V., Joubert, L., Herrera, B., & Toro-Labbé, A. (2015). Atomic decomposition of conceptual DFT descriptors: Application to proton transfer reactions. Physical Chemistry Chemical Physics, 17, 17797–17808. doi:10.1039/c5cp01515d
  • Iogansen, A. V. (1999). Direct proportionality of the hydrogen bonding energy and the intensification of the stretching ν(XH) vibration in infrared spectra. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 55, 1585–1612. doi:10.1016/S1386-1425(98)00348-5
  • Jones, A. C., & Neely, R. K. (2015). 2-aminopurine as a fluorescent probe of DNA conformation and the DNA–enzyme interface. Quarterly Reviews of Biophysics, 48, 244–279. doi:10.1017/S0033583514000158
  • Keith, T. A. (2010). AIMAll (Version 10.07.01). Retrieved from aim.tkgristmill.com
  • Kendall, R. A., Dunning, T. H., Jr., & Harrison, R. J. (1992). Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. The Journal of Chemical Physics, 96, 6796–6806. doi:10.1063/1.462569
  • Kimsey, I. J., Petzold, K., Sathyamoorthy, B., Stein, Z. W., & Al-Hashimi, H. M. (2015). Visualizing transient Watson–Crick-like mispairs in DNA and RNA duplexes. Nature, 519, 315–320. doi:10.1038/nature14227
  • Kirmizialtin, S., Nguyen, V., Johnson, K. A., & Elber, R. (2012). How conformational dynamics of DNA polymerase select correct substrates: Experiments and simulations. Structure, 20, 618–627. doi:10.1016/j.str.2012.02.018
  • Krishnan, R., Binkley, J. S., Seeger, R., & Pople, J. A. (1980). Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. The Journal of Chemical Physics, 72, 650–654. doi:10.1063/1.438955
  • Kondratyuk, I. V., Samijlenko, S. P., & Kolomiets’, I. M., & Hovorun, D. M. (2000). Prototropic molecular–zwitterionic tautomerism of xanthine and hypoxanthine. Journal of Molecular Structure, 523, 109–118. doi:10.1016/S0022-2860(99)00385-3
  • Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B: Condensed Matter and Materials Physics, 37, 785–789. doi:10.1103/PhysRevB.37.785
  • Lenz, T., Bonnist, E. Y. M., Pljevaljčić, G., Neely, R. K., Dryden, D. T. F., Scheidig, A. J., … Weinhold, E. (2007). 2-aminopurine flipped into the active site of the adenine-specific DNA methyltransferase M.TaqI: Crystal structures and time-resolved fluorescence. Journal of the American Chemical Society, 129, 6240–6248. doi:10.1021/ja069366n
  • Mata, I., Alkorta, I., Espinosa, E., & Molins, E. (2011). Relationships between interaction energy, intermolecular distance and electron density properties in hydrogen bonded complexes under external electric fields. Chemical Physics Letters, 507, 185–189. doi:10.1016/j.cplett.2011.03.055
  • Matta, C. F. (2014). Modeling biophysical and biological properties from the characteristics of the molecular electron density, electron localization and delocalization matrices, and the electrostatic potential. Journal of Computational Chemistry, 35, 1165–1198. doi:10.1002/jcc.23608
  • Matta, C. F., Castillo, N., & Boyd, R. J. (2006a). Atomic contributions to bond dissociation energies in aliphatic hydrocarbons. The Journal of Chemical Physics, 125, 204103. doi:10.1063/1.2378720
  • Matta, C. F., Castillo, N., & Boyd, R. J. (2006b). Extended weak bonding interactions in DNA: π-stacking (base−base), base−backbone, and backbone−backbone interactions. The Journal of Physical Chemistry B, 110, 563–578. doi:10.1021/jp054986g
  • Matta, C. F., & Hernández-Trujillo, J. (2005). Bonding in polycyclic aromatic hydrocarbons in terms of the electron density and of electron delocalization. The Journal of Physical Chemistry A, 109, 10798–10798. doi:10.1021/jp034952d
  • Neely, R. K., Daujotyte, D., Grazulis, S., Magennis, S. W., Dryden, D. T., Klimasauskas, S., & Jones, A. C. (2005). Time-resolved fluorescence of 2-aminopurine as a probe of base flipping in M. HhaI-DNA complexes. Nucleic Acids Research, 33, 6953–6960. doi:10.1093/nar/gki995
  • Neely, R. K., Magennis, S. W., Dryden, D. T. F., & Jones, A. C. (2010). Evidence of tautomerism in 2-aminopurine from fluorescence lifetime measurements. Journal of Physical Chemistry B, 108, 17606–17610. doi:10.1021/jp0490857
  • Neely, R. K., Tamulaitis, G., Chen, K., Kubala, M., Siksnys, V., & Jones, A. C. (2009). Time-resolved fluorescence studies of nucleotide flipping by restriction enzymes. Nucleic Acids Research, 37, 6859–6870. doi:10.1093/nar/gkp688
  • Parr, R. G., & Yang, W. (1989). Density-functional theory of atoms and molecules. Oxford: Oxford University Press.
  • Peng, C., Ayala, P. Y., Schlegel, H. B., & Frisch, M. J. (1996). Using redundant internal coordinates to optimize equilibrium geometries and transition states. Journal of Computational Chemistry, 17, 49–56. doi:10.1002/(SICI)1096-987X(19960115)17:1<49:AID-JCC5>3.0.CO;2-0
  • Pitsikas, P., Patapas, J. M., & Cupples, C. G. (2004). Mechanism of 2-aminopurine-stimulated mutagenesis in Escherichia coli. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 550, 25–32. doi:10.1016/j.mrfmmm.2004.01.008
  • Platonov, M. O., Samijlenko, S. P., Sudakov, O. O., Kondratyuk, I. V., & Hovorun, D. M. (2005). To what extent can methyl derivatives be regarded as stabilized tautomers of xanthine? Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy, 62, 112–114. doi:10.1016/j.saa.2004.12.012
  • Podolyan, Y., Gorb, L., & Leszczynski, J. (2003). Ab initio study of the prototropic tautomerism of cytosine and guanine and their contribution to spontaneous point mutations. International Journal of Molecular Sciences, 4, 410–421. doi:10.3390/i4070410
  • Raczyńska, E. D., & Makowski, M. (2014). Geometric consequences of electron delocalization for adenine tautomers in aqueous solution. Journal of Molecular Modeling, 20, 2234. doi:10.1007/s00894-014-2234-4
  • Raczyńska, E. D., Makowski, M., Hallmann, M., & Kamińska, B. (2015). Geometric and energetic consequences of prototropy for adenine and its structural models – A review. RSC Advances, 5, 36587–36604. doi:10.1039/C4RA17280A
  • Raczyńska, E. D., Makowski, M., Zientara-Rytter, K., Kolczyńska, K., Stępniewski, T. M., & Hallmann, M. (2013). Quantum-chemical studies on the favored and rare tautomers of neutral and redox adenine. The Journal of Physical Chemistry A, 117, 1548–1559. doi:10.1021/jp3081029
  • Ramaekers, R., Adamowicz, L., & Maes, G. (2002). Tautomery and H-bonding characteristics of 2-aminopurine: A combined experimental and theoretical study. The European Physical Journal D, 20, 375–388. doi:10.1140/epjd/e2002-00160-9
  • Reha-Krantz, L. J., Hariharan, Ch, Subuddhi, U., Xia, Sh, Zhao, Ch, Beckman, J., … Konigsberg, W. (2011). Structure of the 2-aminopurine-cytosine base pair formed in the polymerase active site of the RB69 Y567A-DNA polymerase. Biochemistry, 50, 10136–10149. doi:10.1021/bi2014618
  • Rein, R., & Garduno, R. (1976). Energetics and mechanism of 2-aminopurine induced mutations chapter quantum science. In J.-L. Calais, O. Goscinski, J. Linderberg, & Y. Öhrn (Eds.), Quantum science (pp. 549–560). New York, NY: Springer. doi:10.1007/978-1-4757-1659-7_40
  • Ronen, A. (1980). 2-Aminopurine. Mutation Research/Reviews in Genetic Toxicology, 75, 1–47. doi:10.1016/0165-1110(80)90026-3
  • Saenger, W. (1984). Principles of nucleic acid structure. New York, NY: Springer.10.1007/978-1-4612-5190-3
  • Sherer, E. C., & Cramer, C. J. (2001). Quantum chemical characterization of the cytosine: 2-aminopurine base pair. Journal of Computational Chemistry, 22, 1167–1179. doi:10.1002/jcc.1075
  • Shukla, M. K., & Leszczynski, J. (2013). Tautomerism in nucleic acid bases and base pairs: A brief overview. Wiley Interdisciplinary Reviews: Computational Molecular Science, 3, 637–649. doi:10.1002/wcms
  • Sordo, J. A. (2001). On the use of the Boys–Bernardi function counterpoise procedure to correct barrier heights for basis set superposition error. Journal of Molecular Structure: THEOCHEM, 537, 245–251. doi:10.1016/S0166-1280(00)00681-3
  • Sordo, J. A., Chin, S., & Sordo, T. L. (1988). On the counterpoise correction for the basis set superposition error in large systems. Theoretica Chimica Acta, 74, 101–110. doi:10.1007/BF00528320
  • Sowers, L. C., Boulard, Y., & Fazakerley, G. V. (2000). Multiple structures for the 2-aminopurine-cytosine mispair. Biochemistry, 39, 7613–7620. doi:10.1021/bi992388k
  • Sowers, L. C., Eritja, R., Chen, F. M., Khwaja, T., Kaplan, B. E., Goodman, M. F., & Fazakerley, G. V. (1989). Characterization of the high pH wobble structure of the 2-aminopurine·cytosine mismatch by N-15 NMR spectroscopy. Biochemical Biophysical Research Communications, 165, 89–92. doi:10.1016/0006-291X(89)91037-1
  • Sowers, L. C., Fazakerley, G. V., Eritja, R., Kaplan, B. E., & Goodman, M. F. (1986). Base pairing and mutagenesis: Observation of a protonated base pair between 2-aminopurine and cytosine in an oligonucleotide by proton NMR. Proceedings of the National Academy of Sciences of the United States of America, 83, 5434–5438. doi:10.1073/pnas.83.15.5434
  • Tirado-Rives, J., & Jorgensen, W. L. (2008). Performance of B3LYP density functional methods for a large set of organic molecules. Journal of Chemical Theory and Computation, 4, 297–306. doi:10.1021/ct700248 k
  • Topal, M. D., & Fresco, J. R. (1976). Complementary base pairing and the origin of substitution mutations. Nature, 263, 285–289. doi:10.1038/263285a0
  • Wang, W., Hellinga, H. W., & Beese, L. S. (2011). Structural evidence for the rare tautomer hypothesis of spontaneous mutagenesis. Proceedings of the National Academy of Sciences of the United States of America, 108, 17644–17648. doi:10.1073/pnas.1114496108
  • Ward, D. C., Reich, E., & Stryer, L. (1969). Fluorescence studies of nucleotides and polynucleotides: I. Formycin, 2-aminopurine riboside, 2,6-diaminopurine riboside, and their derivatives. Journal of Biological Chemistry, 244, 1228–1237. Retrieved from http://www.jbc.org/content/244/5/1228.abstract
  • Watanabe, S. M., & Goodman, M. F. (1981). On the molecular basis of transition mutations: Frequencies of forming 2-aminopurine·cytosine and adenine·cytosine base mispairs in vitro. Proceedings of the National Academy of Sciences of the United States of America, 78, 2864–2868. doi:10.1073/pnas.78.5.2864
  • Watanabe, S. M., & Goodman, M. F. (1982). Kinetic measurement of 2-aminopurine·cytosine and 2-aminopurine·thymine base pairs as a test of DNA polymerase fidelity mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 79, 6429–6433. doi:10.1073/pnas.79.21.6429
  • Watson, J. D., & Crick, F. H. C. (1953). The Structure of DNA. Cold Spring Harbor Symposia on Quantitative Biology, 18, 123–131. doi:10.1101/SQB.1953.018.01.020
  • Wigner, E. P. (1997). Über das überschreiten von Potentialschwellen bei chemischen reaktionen [Crossing of potential thresholds in chemical reactions]. In Part I: Physical Chemistry. Part II: Solid State Physics, Volume A/4 of the series The Collected Works of Eugene Paul Wigner (pp. 96–109). doi:10.1007/978-3-642-59033-7_8
  • Zoete, V., & Meuwly, M. (2004). Double proton transfer in the isolated and DNA-embedded guanine-cytosine base pair. The Journal of Chemical Physics, 121, 4377–4388. doi:10.1063/1.1774152

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.